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What Are Solitary Waves?

Definition

The propagation of non-dispersive energy bundles through discrete and continuous
media.
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What Are Solitary Waves?

Definition

The propagation of non-dispersive energy bundles through discrete and continuous
media.

v

Example - Burgers' Equation

uy + auuy + By, =0
Let u(x, t) = f(x — ct). Then,

(—c+af)f' + Bf" = 0.

This yields a solution of the form

u(x,t) = 2 1+ﬁtanh§(x— ct)| .
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort =10
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation for t = 0.1
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort = 0.2
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort = 0.3
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort = 0.4
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort = 0.5
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort = 0.6
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort = 0.7
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort = 0.8
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Burgers’ Equation Traveling Wave

Solution of Burgers' Equation fort =09
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What Are Solitons?

@ 1834 John Scott Russell's Great Wave of Translation
@ 50 years of Controversy with Airy, Stokes, et al.

@ 1870's Boussinesq and Rayleigh verification
@ 1895 Korteweg and deVries derived PDE

@ 1965 Zabusky & Kruskal revived KdV Equation in study of Fermi-Pasta-Ulam
Problem

v
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@ 1870's Boussinesq and Rayleigh verification

@ 1895 Korteweg and deVries derived PDE
°

1965 Zabusky & Kruskal revived KdV Equation in study of Fermi-Pasta-Ulam
Problem

W

Soliton

Traveling wave solutions satisfying
@ They are of permanent form;
@ They are localised within a region;

© They can interact with other solitons, and emerge from the collision
unchanged, except for a phase shift.
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The KdV Equation

The PDE

The Korteweg-deVries Equation takes several forms.

Uy + auuy + Buxx = 0.

For example,
Us + 6UUy + Uy = 0.

The nonlinear term can balance the dispersive term.
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The KdV Equation

The Korteweg-deVries Equation takes several forms.
Uy + auuy + Buxx = 0.

For example,
Us + 6UUy + Uy = 0.

The nonlinear term can balance the dispersive term.

One - Soliton Solution
Let u(x,t) = f(x — ct). Then,

(—c+6f)f +f" =0.
This yields a solution of the form

u(x,t) = 2% sech?n(x — 4n°t), c = 4n>.
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Evolution of One Soliton Solution

Orne Soliton Solution of KdY fort =10
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =001
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =02
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =03
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =04
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =05
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =08
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =07
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =08
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Evolution of One Soliton Solution

One Soliton Solution of KdY fort =09
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The Two Soliton Solution of the KdV Equation

Form of the Solution

When two solitons collide, they interact elastically. The exact solution for the two
soliton equation is given by

_2(p? — q?)(p? + g% sech 2x(x, t) sinh® O(x, t)) (1)

ulx, £) = (pcosh O(x, t) — gtanh x(x, t) sinh f(x, t))?

where the phases are
0(x, t) = px — 4p*(t — to) ()

and
X(x,t) = qx — 4q3(t — to). 3)

In our simulation we take p =2, g = 1.5 and ty = 0.5.
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort =10
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort = 0.1
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort =02

=
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort =03
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort = 0.4
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort =05
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort =06
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort =07
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort =08
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Animation of Two Solitons Colliding

Two Soliton Solution of KdY fort =09
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The Two Soliton Solution of the KdV Equation

Two Soliton Solution of KdV (Zabusky-Kruskal Scheme)

ux.t)
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KdV-Burgers Equation

Special Cases

The KdV-Burgers Equation is given by
U + oty + By + St = 0.

Traveling wave solutions are given for

u(x,t) = % [1 + tanh k(x — 2kt)] (4)
2
u(x,t) = 12sk sech 2k(x — 4sk>t) (5)
«
u(x,t) = Asech?n(x — vt) + 2A[1 + tanhn(x — vt)], (6)
where
P I '}
~ 2%as’ 55’ 1T 10s
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort=10

0ak E
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort = 1
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort = 2
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort = 3
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort = 4

0ak E
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort=5

0ak E
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort =6

0ak E
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort =7

0ak E
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort =8

0ak E
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KdV-Burgers Traveling Wave Solution

Solution of Kdv-Burgers' Equation fort=9

0ak E
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What is Colored Noise?

Noise Types

White - equal energy/cycle - constant frequency spectrum

Pink - 1/f-noise - flat in log space - decreases 3 dB per octave
Brown - Decrease of 6 dB per octave
Blue - Increase 3 dB per octave

Purple - Increase 6 dB per octave
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What is Colored Noise?

White - equal energy/cycle - constant frequency spectrum
Pink - 1/f-noise - flat in log space - decreases 3 dB per octave
Brown - Decrease of 6 dB per octave

Blue - Increase 3 dB per octave

Purple - Increase 6 dB per octave

White Noise ———

Intensity (dB)

100 1000 10000
Frequency (Hz)

Dr. Herman (UNCW) Stochastic Solitons MAA-SE 2008 13 /28



What is Colored Noise?

White - equal energy/cycle - constant frequency spectrum
Pink - 1/f-noise - flat in log space - decreases 3 dB per octave
Brown - Decrease of 6 dB per octave

Blue - Increase 3 dB per octave

Purple - Increase 6 dB per octave

Intensity (dB}

100 1000 10000
Frequency (Hz)
Dr. Herman (UNCW)

Stochastic Solitons MAA-SE 2008



What is Colored Noise?

White - equal energy/cycle - constant frequency spectrum
Pink - 1/f-noise - flat in log space - decreases 3 dB per octave
Brown - Decrease of 6 dB per octave

Blue - Increase 3 dB per octave

Purple - Increase 6 dB per octave

Brown Noise

Intensity (dB;)

100 1000 10000
Frequency (Hz)
Dr. Herman (UNCW)

Stochastic Solitons MAA-SE 2008 13 /28



What is Colored Noise?

Noise Types

White - equal energy/cycle - constant frequency spectrum
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What is White Noise?

<n(t) >=0.

<n(t)n(s) >=6(t - s).

n(t) is formal derivative of a Wiener process, W/(t)
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What is White Noise?

< n(t) >=0.
<n(t)n(s) >=6(t - s).

n(t) is formal derivative of a Wiener process, W/(t)

W

Brownian Motion

% —(t) or dW = n(t)dt.
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What is White Noise?

< n(t) >=0.
<n(t)n(s) >=6(t — s).

n(t) is formal derivative of a Wiener process, W/(t)

dw

=n(t) or dW =n(t)dt.

dt

v

Stochastic ODE

dx
i en(t)
dx = edW.

Xji — Xj—1 = €(W(t,') = W(t,'_l)) = edW,.

v
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Quantifying Colored Noise

Real Systems Are Not White

& = oty ()

where
< &(1)E(s) >= Ae~ltmsl/T,
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Quantifying Colored Noise

Real Systems Are Not White

& = oty ()

where
< &(1)E(s) >= Ae~ltmsl/T,

Ornstein-Uhlenbeck Process

d¢

1 €
g = ro 70

for

<E(t)>=0, <E&(E(s) >= ;efltfsl/r.
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Exact Solution of Stochastic KdV - Wadati - 1983

Time-dependent SkDV

Us + 6Uly + Uy = C(1),

¢(t) is Gaussian white noise: zero mean and (< * >= E[x])

< C(t)¢(t) >=2e6(t — ).

(7)

(8)
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Exact Solution of Stochastic KdV - Wadati - 1983

Up + OUUy + Uy = C(t)a (7)

¢(t) is Gaussian white noise: zero mean and (< * >= E[x])

< C(t)¢(t) >=2e6(t — ). (8)

o’

Galilean transformation

u(x, t) UX, T)+W(T), X=x+m(t), T=t, 9)

m(t)=—6/W /4 )dt’,

transforms the stochastic KdV:

Ut +6UUx + Uxxx = 0, (10)

V.
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The One Soliton Solution Under Noise

The One Soliton Solution of the KdV

U(X, T) = 2n%sech?(n(X — 47°T — Xo)) (11)

Leads directly to exact sKdV solution:

u(x,t) = 2n* sech? (n <x — 4t — x — 6/; W(t") dt')) +W(t). (12)

http://people.uncw.edu/hermanr/Research/SKdV/soliton_movie.htm
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The One Soliton Solution Under Noise

The One Soliton Solution of the KdV

UX, T)= 2n? sech 2(77(X — 4T — Xo))

Leads directly to exact sKdV solution:

u(x,t) = 2n* sech? (n <x — 4t — x — 6/; W(t") dt')) +W(t). (12)

http://people.uncw.edu/hermanr/Research/SKdV/soliton_movie.htm

Exact Statistical Average

b [ k
<ulx,t)> = —L [ _TX_giak—bk® gy
T J_o Sinhmk

7 /Oo ~(a-5)/4b cach 25 4 (13)
= e sech = ds,
Vb J - 2

where
a=2n(x — xo — 21°t),
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Averaged Soliton with Noise
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Stochastic KdV Amplitudes - < u(x,t) >mnax VS.

500 runs fore =1 and n =2
9 T T T T T T T
exact
numerical | 4

amplitude

Figure: 500 runs for x € [—10,90] with N = 1000, ¢ = .1, and n = 2.
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Stochastic KdV Amplitudes - White

Kdy' Soliton Under White Moise
25 T T T T T

Armplitude <ufx t)=>

_DS 1 1 1 1 1 1
a 10 20 a0 40 50 60 70
Time t

Figure: 500 runs for x € [—10,90] with N =500, ¢ = .1, and n = 2.
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Stochastic KdV Amplitudes - Pink Noise

Kdy Soliton Under Pink Moise
25 T T T T T T

Armplitude <ufx t)=>

045 B

_DS 1 1 1 1 1 1
1] 10 20 a0 40 a0 60 70

Time t

Figure: 1000 runs for x € [—10,90] with N =500, € = .1, and n = 2.
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Stochastic KdV Amplitudes - Pink Noise

045

Armplitude <ufx t)=>

05
1]

Kdy Soliton Under Pink Moise

Time t

70

Figure: 2000 runs for x € [—10,90] with N =500, ¢ = .1, and n = 2.
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Stochastic KdV Amplitudes - Brown Noise

Kdy Soliton Under Brown Maoise
22 T T T T

Amplitude <ufx t)>

0.8 H 1

0.6 F B

o4t .

0.2 1 1 1 1 1 1
1]

Time t

Figure: 1000 runs for x € [—10,90] with N =500, € = .1, and n = 2.
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Stochastic KdV Amplitudes - Brown Noise

Kdy Soliton Under Brown Maoise
25 T T T T

Armplitude <ufx t)=>
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1]

Time t

Figure: 2000 runs for x € [—10,90] with N =500, ¢ = .1, and n = 2.
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Stochastic KdV Amplitudes - Brown Noise

Kdy Soliton Under Brown Maoise
25 T T T T

Armplitude <ufx t)=>
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1]

Time t

Figure: 3000 runs for x € [—10,90] with N =500, ¢ = .1, and n = 2.
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Outline of Talk

Solitary Waves and Solitons
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So, What is the answer?

What's the question?
Are Solitary Waves Color Blind to Noise?
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So, What is the answer?

—

What's the question?
Are Solitary Waves Color Blind to Noise?

Most likely - NO
Thank you.
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