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What Are Solitary Waves?

Definition

The propagation of non-dispersive energy bundles through discrete and continuous
media.

Example - Burgers’ Equation

ut + αuux + βuxx = 0

Let u(x , t) = f (x − ct). Then,

(−c + αf )f ′ + βf ′′ = 0.

This yields a solution of the form

u(x , t) =
c

α

[
1 + β tanh

c

2
(x − ct)

]
.

Dr. Herman (UNCW) Stochastic Solitons MAA-SE 2008 3 / 28



What Are Solitary Waves?

Definition

The propagation of non-dispersive energy bundles through discrete and continuous
media.

Example - Burgers’ Equation

ut + αuux + βuxx = 0

Let u(x , t) = f (x − ct). Then,

(−c + αf )f ′ + βf ′′ = 0.

This yields a solution of the form

u(x , t) =
c

α

[
1 + β tanh

c

2
(x − ct)

]
.

Dr. Herman (UNCW) Stochastic Solitons MAA-SE 2008 3 / 28



Burgers’ Equation Traveling Wave
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What Are Solitons?

History

1834 John Scott Russell’s Great Wave of Translation

50 years of Controversy with Airy, Stokes, et al.

1870’s Boussinesq and Rayleigh verification

1895 Korteweg and deVries derived PDE

1965 Zabusky & Kruskal revived KdV Equation in study of Fermi-Pasta-Ulam
Problem

Soliton

Traveling wave solutions satisfying

1 They are of permanent form;

2 They are localised within a region;

3 They can interact with other solitons, and emerge from the collision
unchanged, except for a phase shift.
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The KdV Equation

The PDE

The Korteweg-deVries Equation takes several forms.

ut + αuux + βuxxx = 0.

For example,
ut + 6uux + uxxx = 0.

The nonlinear term can balance the dispersive term.

One - Soliton Solution

Let u(x , t) = f (x − ct). Then,

(−c + 6f )f ′ + f ′′′ = 0.

This yields a solution of the form

u(x , t) = 2η2 sech 2η(x − 4η2t), c = 4η2.
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Evolution of One Soliton Solution
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The Two Soliton Solution of the KdV Equation

Form of the Solution

When two solitons collide, they interact elastically. The exact solution for the two
soliton equation is given by

u(x , t) =
2(p2 − q2)(p2 + q2 sech 2χ(x , t) sinh2 θ(x , t))

(p cosh θ(x , t)− q tanhχ(x , t) sinh θ(x , t))2
(1)

where the phases are
θ(x , t) = px − 4p3(t − t0) (2)

and
χ(x , t) = qx − 4q3(t − t0). (3)

In our simulation we take p = 2, q = 1.5 and t0 = 0.5.
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Animation of Two Solitons Colliding
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The Two Soliton Solution of the KdV Equation
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KdV-Burgers Equation

Special Cases

The KdV-Burgers Equation is given by

ut + αuux + βuxx + suxxx = 0.

Traveling wave solutions are given for

u(x , t) =
2k

α
[1 + tanh k(x − 2kt)] (4)

u(x , t) =
12sk2

α
sech 2k(x − 4sk2t) (5)

u(x , t) = A sech 2η(x − vt) + 2A [1 + tanh η(x − vt)] , (6)

where

A =
3β2

25αs
, v =

6β2

5s
, η =

β

10s
.
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KdV-Burgers Traveling Wave Solution
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What is Colored Noise?

Noise Types

White - equal energy/cycle - constant frequency spectrum

Pink - 1/f -noise - flat in log space - decreases 3 dB per octave

Brown - Decrease of 6 dB per octave

Blue - Increase 3 dB per octave

Purple - Increase 6 dB per octave
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What is White Noise?

White Noise

< η(t) >= 0.

< η(t)η(s) >= δ(t − s).

η(t) is formal derivative of a Wiener process, W (t)

Brownian Motion

dW

dt
= η(t) or dW = η(t)dt.

Stochastic ODE

dx

dt
= εη(t)

dx = εdW .

xi − xi−1 = ε(W (ti )−W (ti−1)) ≡ εdWi .
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Quantifying Colored Noise

Real Systems Are Not White

dx

dt
= αx + γ + µxξ(t),

where
< ξ(t)ξ(s) >= Ae−|t−s|/τ .

Ornstein-Uhlenbeck Process

dξ

dt
= −1

τ
ξ +

ε

τ
η(t)

for

< ξ(t) >= 0, < ξ(t)ξ(s) >=
ε2

2τ
e−|t−s|/τ .
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Exact Solution of Stochastic KdV - Wadati - 1983

Time-dependent SkDV

ut + 6uux + uxxx = ζ(t), (7)

ζ(t) is Gaussian white noise: zero mean and (< ∗ >= E [∗])

< ζ(t)ζ(t ′) >= 2εδ(t − t ′). (8)

Galilean transformation

u(x , t) = U(X ,T ) + W (T ), X = x + m(t), T = t, (9)

m(t) = −6

∫ t

0

W (t ′)dt ′, W (t) =

∫ t

0

ζ(t ′) dt ′,

transforms the stochastic KdV:

UT + 6UUX + UXXX = 0, (10)
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The One Soliton Solution Under Noise

The One Soliton Solution of the KdV

U(X ,T ) = 2η2 sech 2(η(X − 4η2T − X0)) (11)

Leads directly to exact sKdV solution:

u(x , t) = 2η2 sech 2

(
η

(
x − 4η2t − x0 − 6

∫ t

0

W (t ′) dt ′
))

+ W (t). (12)

http://people.uncw.edu/hermanr/Research/SKdV/soliton_movie.htm

Exact Statistical Average

< u(x , t) > =
4η2

π

∫ ∞
−∞

πk

sinhπk
e iak−bk2

dk .

=
η2

√
πb

∫ ∞
−∞

e−(a−s)2/4b sech 2 s

2
ds, (13)

where
a = 2η(x − x0 − 2η2t),

b = 48η2εt3.
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Averaged Soliton with Noise
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Stochastic KdV Amplitudes - < u(x , t) >max vs. t -
Exact Comparison

Figure: 500 runs for x ∈ [−10, 90] with N = 1000, ε = .1, and η = 2.
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Stochastic KdV Amplitudes - White

Figure: 500 runs for x ∈ [−10, 90] with N = 500, ε = .1, and η = 2.
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Stochastic KdV Amplitudes - Pink Noise

Figure: 1000 runs for x ∈ [−10, 90] with N = 500, ε = .1, and η = 2.
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Stochastic KdV Amplitudes - Pink Noise

Figure: 2000 runs for x ∈ [−10, 90] with N = 500, ε = .1, and η = 2.
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Stochastic KdV Amplitudes - Brown Noise

Figure: 1000 runs for x ∈ [−10, 90] with N = 500, ε = .1, and η = 2.
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Stochastic KdV Amplitudes - Brown Noise

Figure: 2000 runs for x ∈ [−10, 90] with N = 500, ε = .1, and η = 2.
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Stochastic KdV Amplitudes - Brown Noise

Figure: 3000 runs for x ∈ [−10, 90] with N = 500, ε = .1, and η = 2.
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So, What is the answer?

What’s the question?

Are Solitary Waves Color Blind to Noise?

Answer

Most likely - NO
Thank you.
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