TGRU Special Relativity

Abstract

General Relativity

Syllabi Textbooks

Poster Summary

# What Should Undergraduates Know About Gravitation?

## Dr. Russell Herman

#### Department of Mathematics & Statistics, UNCW



| Abstract | TGRU<br>00000 | Special Relativity | General Relativity | Syllabi<br>000000 | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-------------------|-----------|--------|---------|
|          |               |                    |                    |                   |           |        |         |

### Abstract

In July 2006 forty five physics faculty from nearly as many universities, including one from UNCW, met at Syracuse University to discuss the importance of teaching general relativity to undergraduates. This discussion came on the heels of a year long celebration of Albert Einstein's miracle year in 1905 which marked the beginnings of the theory of relativity and the ever increasing interest in gravitation and cosmology. There were numerous talks and posters on topics that could be used to present general relativity to undergraduates. These included gravitational radiation and LIGO, deviations from Newtonian gravitation and GPS, black holes, and experimental tests of general relativity. Leading authors of new undergraduate texts on general relativity contributed their thoughts on what students can learn about relativity. One of the goals of the workshop was to produce sample syllabi for courses aimed at three different audiences; general interest, physics intensive and mathematics intensive. In this talk we will discuss some of the ideas that came out of this workshop and, of course, talk a bit about general relativity and the growing need to introduce it into the physics curriculum.

| Abstract | <b>TGRU</b><br>00000                   | Special Relativity                        | General Relativity | Syllabi T  | Textbooks<br>⊃⊙     | Poster  | Summary |
|----------|----------------------------------------|-------------------------------------------|--------------------|------------|---------------------|---------|---------|
| Outli    | ne                                     |                                           |                    |            |                     |         |         |
| 1        | Web<br>Web                             |                                           |                    |            |                     |         |         |
| 2        | -                                      | /? Who? Wha<br>Il Relativity<br>tulates   | at?                |            |                     |         |         |
| 3        | •                                      | cetime Diagra<br>al Relativity<br>ciples  | ams                |            |                     |         |         |
|          | <ul><li>Flat</li><li>Curvent</li></ul> | Space<br>ved Space                        |                    |            |                     |         |         |
| 4        | Gen                                    | e Syllabi<br>leral Interest<br>sics First |                    |            |                     |         |         |
| 5        | -                                      | h Intensive                               |                    |            |                     |         |         |
| 6 7      | Poster<br>Summa                        |                                           |                    | < <b>—</b> | > <b>≺ ⊡</b> >  ∢ ≣ | → < 三 > | E nac   |

# Teaching General Relativity to Undergraduates

#### AAPT TGRU site

http://www.aapt-doorway.org/TGRU/

The workshop was supported by the LIGO Project, the Center for Gravitational Wave Physics at Penn State, the American Association of Physics Teachers, and the Syracuse University Department of Physics.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

# Teaching General Relativity to Undergraduates

#### AAPT TGRU site

http://www.aapt-doorway.org/TGRU/

The workshop was supported by the LIGO Project, the Center for Gravitational Wave Physics at Penn State, the American Association of Physics Teachers, and the Syracuse University Department of Physics.

Information at Web Site

# Teaching General Relativity to Undergraduates

### AAPT TGRU site

#### http://www.aapt-doorway.org/TGRU/

The workshop was supported by the LIGO Project, the Center for Gravitational Wave Physics at Penn State, the American Association of Physics Teachers, and the Syracuse University Department of Physics.

#### Information at Web Site

- Talks
- Posters
- Articles Pedagogy/Research
- Links to Texts
- Course Design/Syllabi

Abstract **TGRU** Special Relativity General Relativity Syllabi Textbooks Poster Summary

## Why Blend SR and GR into the Curriculum?

A Few Answers ...

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

## Why Blend SR and GR into the Curriculum?

A Few Answers ...

• Equivalence Principle works well.

# Why Blend SR and GR into the Curriculum?

#### A Few Answers ...

- Equivalence Principle works well.
- GPS fails without GR.

# Why Blend SR and GR into the Curriculum?

#### A Few Answers ...

- Equivalence Principle works well.
- GPS fails without GR.
- Gravitational red-shift is a fact.

# Why Blend SR and GR into the Curriculum?

#### A Few Answers ...

- Equivalence Principle works well.
- GPS fails without GR.
- Gravitational red-shift is a fact.
- Hulse-Taylor binary pulsar produces gravitational waves.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary ○●○○○ ○○○

# Why Blend SR and GR into the Curriculum?

#### A Few Answers ...

- Equivalence Principle works well.
- GPS fails without GR.
- Gravitational red-shift is a fact.
- Hulse-Taylor binary pulsar produces gravitational waves.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

• Gravitational Lensing is being used.

# Why Blend SR and GR into the Curriculum?

#### A Few Answers ...

- Equivalence Principle works well.
- GPS fails without GR.
- Gravitational red-shift is a fact.
- Hulse-Taylor binary pulsar produces gravitational waves.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

- Gravitational Lensing is being used.
- Galactic-centered black holes are the norm.

Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary ○●○○○ ○○○

# Why Blend SR and GR into the Curriculum?

#### A Few Answers ...

- Equivalence Principle works well.
- GPS fails without GR.
- Gravitational red-shift is a fact.
- Hulse-Taylor binary pulsar produces gravitational waves.
- Gravitational Lensing is being used.
- Galactic-centered black holes are the norm.
- Laser Interferometer Gravitational-Wave Observatory

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary ○●○○○ ○○○

# Why Blend SR and GR into the Curriculum?

#### A Few Answers ...

- Equivalence Principle works well.
- GPS fails without GR.
- Gravitational red-shift is a fact.
- Hulse-Taylor binary pulsar produces gravitational waves.
- Gravitational Lensing is being used.
- Galactic-centered black holes are the norm.
- Laser Interferometer Gravitational-Wave Observatory

•  $E = mc^2$  is more recognized than F = ma.

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Who,     | What          | ?                  |                    |  |        |         |

Who Should Do It?

・ロト・西ト・ヨト・ヨト ヨー わへぐ

| Abstract | TGRU<br>○o●oo | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Who,     | What          | ?                  |                    |  |        |         |

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

#### Who Should Do It?

• Do not need relativity experts.

| Abstract | TGRU<br>○0●00 | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Who,     | What          | ?                  |                    |  |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

| Abstract | TGRU<br>○o●oo | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Who      | What          | ?                  |                    |  |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

#### What Topics?

| Abstract | TGRU<br>○o●oo | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Who      | What          | ?                  |                    |  |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

## What Topics?

Black holes

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Who      | What          | ?                  |                    |  |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

## What Topics?

- Black holes
- Gravitational Waves

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Who      | What          | ?                  |                    |  |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

## What Topics?

- Black holes
- Gravitational Waves
- Cosmology

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Who      | What          | ?                  |                    |  |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

#### What Topics?

- Black holes
- Gravitational Waves
- Cosmology

| Abstract | TGRU<br>○0●00 | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
|          |               |                    |                    |           |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

## What Topics?

- Black holes
- Gravitational Waves
- Cosmology

- Math or Physics First?
- Math First

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
|          |               |                    |                    |           |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

## What Topics?

- Black holes
- Gravitational Waves
- Cosmology

- Math or Physics First?
- Math First
  - develop math foundations (tensors and differential geometry).

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|---------|-----------|--------|---------|
|          |               |                    |                    |         |           |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

## What Topics?

- Black holes
- Gravitational Waves
- Cosmology

- Math or Physics First?
- Math First
  - develop math foundations (tensors and differential geometry).
  - Einstein's Equations and then Applications.

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
|          |               | _                  |                    |           |        |         |

## Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

### What Topics?

- Black holes
- Gravitational Waves
- Cosmology

- Math or Physics First?
- Physics First

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
|          |               | _                  |                    |           |        |         |

## Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

## What Topics?

- Black holes
- Gravitational Waves
- Cosmology

- Math or Physics First?
- Physics First
  - Applications first and then mathematical background.

| Abstract | TGRU<br>○○●○○ | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
|          |               | _                  |                    |           |        |         |

## Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

## What Topics?

- Black holes
- Gravitational Waves
- Cosmology

- Math or Physics First?
- Physics First
  - Applications first and then mathematical background.
  - Understanding gravity as curved spacetime via examples.

| Abstract | TGRU<br>○o●oo | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
| Who,     | What          | t?                 |                    |           |        |         |

#### Who Should Do It?

- Do not need relativity experts.
- Streamline Mathematics Background.

### What Topics?

- Black holes
- Gravitational Waves
- Cosmology

- Math or Physics First?
- General Interest Possibly the only physics course.

| Abstract | TGRU<br>○○○●○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Befor    | e I for       | get                |                    |  |        |         |

What Should Undergraduates Know About Gravity?

| Abstract | TGRU<br>○○○●○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Befor    | e I for       | get                |                    |  |        |         |

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

What Should Undergraduates Know About Gravity?

• Gravity is a universal interaction.

| Abstract | TGRU<br>○○○●○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Befor    | e I for       | get                |                    |  |        |         |

What Should Undergraduates Know About Gravity?

- Gravity is a universal interaction.
  - Newtonian physics between all masses

| Abstract | TGRU<br>○○○●○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Befor    | e I for       | get                |                    |  |        |         |

What Should Undergraduates Know About Gravity?

• Gravity is a universal interaction.

• Relativistic - between all forms of energy

| Abstract | TGRU<br>○○○●○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Befor    | e I for       | get                |                    |  |        |         |

What Should Undergraduates Know About Gravity?

• Gravity is a universal interaction.

• Gravity is unscreened and always attractive

| Abstract | TGRU<br>○○○●○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Befor    | e I for       | get                |                    |  |        |         |

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ つ へ の

What Should Undergraduates Know About Gravity?

• Gravity is a universal interaction.

- Gravity is unscreened and always attractive
- Gravity is long-ranged.

| Abstract | TGRU<br>○○○●○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Befor    | e I for       | get                |                    |  |        |         |

What Should Undergraduates Know About Gravity?

• Gravity is a universal interaction.

- Gravity is unscreened and always attractive
- Gravity is long-ranged.
- Gravity is the weakest fundamental interaction.

| Abstract | TGRU<br>○○○●○ | Special Relativity | General Relativity |  | Poster | Summary |
|----------|---------------|--------------------|--------------------|--|--------|---------|
| Befor    | e I for       | aet                |                    |  |        |         |

What Should Undergraduates Know About Gravity?

• Gravity is a universal interaction.

- Gravity is unscreened and always attractive
- Gravity is long-ranged.
- Gravity is the weakest fundamental interaction.

$$G_{\mu
u} = T_{\mu
u}$$

Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary

# Relativity at a Young Age



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

| Abstract | TGRU<br>00000 | Special Relativity<br>●○○ | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|---------------------------|--------------------|-----------|--------|---------|
| Snoo     |               | lotivity                  |                    |           |        |         |

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

# Special Relativity

### Postulates

| Absilaci | 00000 |                    | 000000000000000000000000000000000000000 |         |           | 1 03(01 | Guinniary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|---------|-----------|
| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster  | Summary   |

・ロト・4回ト・4回ト・4回ト・4回ト

### Special Relativity

### Postulates

Speed of light is constant

| Abstract | <b>TGRU</b><br>00000 | Special Relativity<br>●○○ | General Relativity | Syllabi<br>0000000 | Textbooks | Poster | Summary |
|----------|----------------------|---------------------------|--------------------|--------------------|-----------|--------|---------|
|          |                      | 1 41 14                   |                    |                    |           |        |         |

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### **Special Relativity**

### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

| Abstract | TGRU  | Special Relativity | General Relativity |         | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|---------|-----------|--------|---------|
|          | 00000 | •00                | 00000000000000     | 0000000 | 00000     |        |         |
|          |       |                    |                    |         |           |        |         |

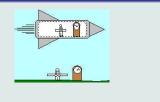
#### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences



・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ つ へ の


| Abstract | <b>TGRU</b><br>00000 | Special Relativity<br>●○○ | General Relativity | Syllabi<br>000000 | Textbooks | Poster | Summary |
|----------|----------------------|---------------------------|--------------------|-------------------|-----------|--------|---------|
| _        |                      |                           |                    |                   |           |        |         |

#### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences

Simultaneity



| Abstract | <b>TGRU</b><br>00000 | Special Relativity<br>●○○ | General Relativity | Textbooks | Poster | Summary |
|----------|----------------------|---------------------------|--------------------|-----------|--------|---------|
|          |                      |                           |                    |           |        |         |

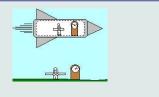
### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences

- Simultaneity
- Time Dilation




| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 00000000000000     | 0000000 | 00000     |        |         |
|          |       |                    |                    |         |           |        |         |

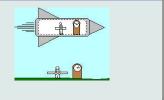
### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences

- Simultaneity
- Time Dilation
- Length Contraction




| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      | 000                |                    |         | 00000     |        |         |
|          |      |                    |                    |         |           |        |         |

### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences

- Simultaneity
- Time Dilation
- Length Contraction
- $E = mc^2$  and more!



・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ つ へ の

| Abstract | TGRU  | Special Relativity | General Relativity                      |        | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|--------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 000000 | 00000     |        |         |
|          |       |                    |                                         |        |           |        |         |

### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences

- Simultaneity
- Time Dilation
- Length Contraction
- $E = mc^2$  and more!

### Noted Concerns

÷

| Abstract | TGRU  | Special Relativity | General Relativity                      |        | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|--------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 000000 | 00000     |        |         |
|          |       |                    |                                         |        |           |        |         |

### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences

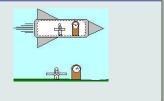
- Simultaneity
- Time Dilation
- Length Contraction
- $E = mc^2$  and more!

### Noted Concerns

Reference Frames vs Coordinate Systems

| Abstract | TGRU  | Special Relativity | General Relativity                      |        | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|--------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 000000 | 00000     |        |         |
|          |       |                    |                                         |        |           |        |         |

### Postulates


- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences

- Simultaneity
- Time Dilation
- Length Contraction
- $E = mc^2$  and more!

### Noted Concerns

- Reference Frames vs Coordinate Systems
- Simultaneity Misconceptions



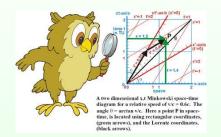
| Abstract | <b>TGRU</b><br>00000 | Special Relativity<br>●○○ | General Relativity | Textbooks | Poster | Summary |
|----------|----------------------|---------------------------|--------------------|-----------|--------|---------|
|          |                      |                           |                    |           |        |         |

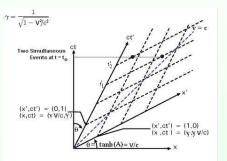
### Postulates

- Speed of light is constant
- Physics is the same for all inertial observers

### Consequences

- Simultaneity
- Time Dilation
- Length Contraction
- $E = mc^2$  and more!

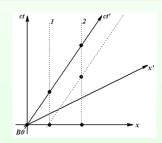

### Noted Concerns

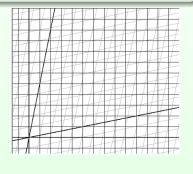

- Reference Frames vs Coordinate Systems
- Simultaneity Misconceptions
- No Spacetime Diagrams



| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 00000     |        |         |

# Minkowski Spacetime




# **Spacetime Diagram Application**

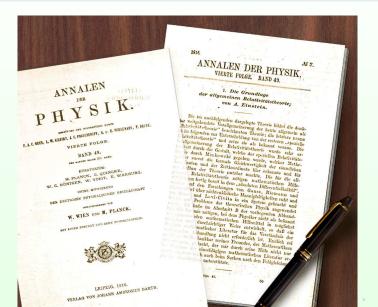
#### Train in Tunnel Problem

A relativistic train of rest length 240 meters travels at 0.6c through a tunnel which has rest length 360 meters. In the figure below the world lines for the tunnel openings are drawn as line 1 and 2 and the world line of the front of the train is the third dotted line. Let  $S_{tunnel}$  be the tunnel with coordinates (x, t) and let  $S_{train}$  be the train coordinates (x', t'). We set the origin as the event B0, the back of the train location just as the front end enters opening 1.





Abstract

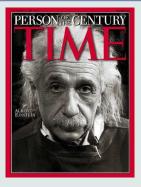

Special Relativity

General Relativity

Syllabi Textbooks Poster

Summary

## General Relativity - 1916




Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary

# The Problem of the Century

#### from the Person of the Century - Smarr, 2000

- 1910s General Theory; Schwarzschild
- 1920s Equation of Motion Posed
- 1930s Two Body Problem Posed
- 1940s Cauchy Problem Posed
- 1950s Numerical Relativity Conceived
- 1960s Geometrodynamics; First NR Attempts
- 1970s Head-On Spacetime Roughed Out
- 1980s NR Becomes a Field
- 1990s Head-On Nailed; 3D Dynamics Begins



2000s 3D Dynamics Nailed; Gravitational Wave Astronomy

|          |      | 1                  |                    |  |        |         |
|----------|------|--------------------|--------------------|--|--------|---------|
| Abstract | TGRU | Special Relativity | General Relativity |  | Poster | Summary |

### General Relativity

### Postulates

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity<br>●oooooooooooooo | Syllabi<br>ooooooo | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|---------------------------------------|--------------------|-----------|--------|---------|
| Gene     | ral Re               | elativity          |                                       |                    |           |        |         |

 General Principle of Relativity - The laws of physics are the same for all observers.

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity<br>●ooooooooooooooo | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|----------------------------------------|-----------|--------|---------|
| Gene     | eral Re              | elativity          |                                        |           |        |         |

- General Principle of Relativity The laws of physics are the same for all observers.
- Principle of General Covariance The laws of physics take the same form for all observers.

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity<br>●o○○○○○○○○○○○○ |  | Poster | Summary |
|----------|----------------------|--------------------|--------------------------------------|--|--------|---------|
| Gene     | eral Re              | elativity          |                                      |  |        |         |

- General Principle of Relativity The laws of physics are the same for all observers.
- Principle of General Covariance The laws of physics take the same form for all observers.
- Inertial Motion is Geodesic Particle worldlines unaffected by forces are timelike or null.

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity<br>●o○○○○○○○○○○○○ |  | Poster | Summary |
|----------|----------------------|--------------------|--------------------------------------|--|--------|---------|
| Gene     | eral Re              | elativity          |                                      |  |        |         |

- General Principle of Relativity The laws of physics are the same for all observers.
- Principle of General Covariance The laws of physics take the same form for all observers.
- Inertial Motion is Geodesic Particle worldlines unaffected by forces are timelike or null.
- Local Lorentz Invariance The laws of special relativity apply locally.

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity<br>●o○○○○○○○○○○○○ |  | Poster | Summary |
|----------|----------------------|--------------------|--------------------------------------|--|--------|---------|
| Gene     | ral Re               | elativity          |                                      |  |        |         |

- General Principle of Relativity The laws of physics are the same for all observers.
- Principle of General Covariance The laws of physics take the same form for all observers.
- Inertial Motion is Geodesic Particle worldlines unaffected by forces are timelike or null.
- Local Lorentz Invariance The laws of special relativity apply locally.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

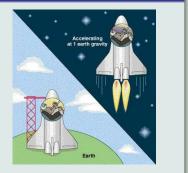
• Spacetime is Curved - Free fall is inertial.

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity<br>●o○○○○○○○○○○○○ |  | Poster | Summary |
|----------|----------------------|--------------------|--------------------------------------|--|--------|---------|
| Gene     | ral Re               | elativity          |                                      |  |        |         |

- General Principle of Relativity The laws of physics are the same for all observers.
- Principle of General Covariance The laws of physics take the same form for all observers.
- Inertial Motion is Geodesic Particle worldlines unaffected by forces are timelike or null.
- Local Lorentz Invariance The laws of special relativity apply locally.
- Spacetime is Curved Free fall is inertial.
- Spacetime Curvature Caused by Stress-Energy -Described by Einstein field equations.

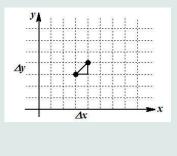
Abstract TGRU Special Relativity

General Relativity


Syllabi Textbooks

Poster Summary

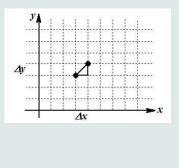
# **General Relativity**


### The Equivalence Principle

Experiments in (sufficiently small) freely falling laboratory, over a short time, give results that are indistinguishable from those experiments in an inertial frame in empty space



・ロト・西ト・西ト・西ト・日 うくぐ

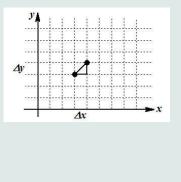

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity<br>○○●○○○○○○○○○○ | Syllabi<br>0000000 | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|-------------------------------------|--------------------|-----------|--------|---------|
|          |                      |                    |                                     |                    |           |        |         |



| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|---------|-----------|--------|---------|

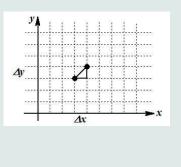
### Flat Spaces - Cartesian

• Line element  $dS^2 = dx^2 + dy^2$ 



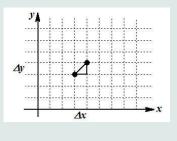

| Abstract | TGRU<br>00000 | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
|          |               |                    |                    |           |        |         |

• Line element  


$$dS^{2} = dx^{2} + dy^{2}$$
•  $S = \int_{A}^{B} L(\frac{dx}{d\sigma}, \frac{dx}{d\sigma}, x, y) dx$ 

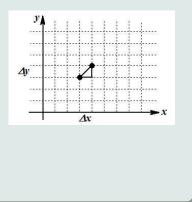
$$L = \sqrt{\left(\frac{dx}{d\sigma}\right)^{2} + \left(\frac{dy}{d\sigma}\right)^{2}}$$




| Abstract | TGRU<br>00000 | Special Relativity | General Relativity | Syllabi<br>00000000 | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|---------------------|-----------|--------|---------|
|          |               |                    |                    |                     |           |        |         |

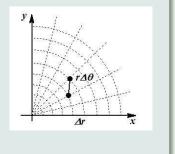
- Line element  $dS^{2} = dx^{2} + dy^{2}$ •  $S = \int_{A}^{B} L(\frac{dx}{d\sigma}, \frac{dx}{d\sigma}, x, y) d\sigma$   $L = \sqrt{\left(\frac{dx}{d\sigma}\right)^{2} + \left(\frac{dy}{d\sigma}\right)^{2}}$
- Variational Principle  $\delta S = 0$




| Abstract | TGRU<br>00000 | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
|          |               |                    |                    |           |        |         |

- Line element  $dS^{2} = dx^{2} + dy^{2}$ •  $S = \int_{A}^{B} L(\frac{dx}{d\sigma}, \frac{dx}{d\sigma}, x, y) d\sigma$   $L = \sqrt{\left(\frac{dx}{d\sigma}\right)^{2} + \left(\frac{dy}{d\sigma}\right)^{2}}$
- Variational Principle  $\delta S = 0$
- Euler-Lagrange Eq.  $\frac{d}{dS} \left( \frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x},$   $\frac{d}{dS} \left( \frac{\partial L}{\partial \dot{y}} \right) = \frac{\partial L}{\partial y}$



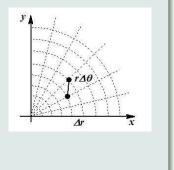

| Abstract | TGRU<br>00000 | General Relativity | Textbooks | Poster | Summary |
|----------|---------------|--------------------|-----------|--------|---------|
|          |               |                    |           |        |         |

- Line element  $dS^{2} = dx^{2} + dy^{2}$ •  $S = \int_{A}^{B} L(\frac{dx}{d\sigma}, \frac{dx}{d\sigma}, x, y) d\sigma$   $L = \sqrt{\left(\frac{dx}{d\sigma}\right)^{2} + \left(\frac{dy}{d\sigma}\right)^{2}}$
- Variational Principle  $\delta S = 0$
- Euler-Lagrange Eq.  $\frac{d}{dS} \left( \frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x},$  $\frac{d}{dS} \left( \frac{\partial L}{\partial \dot{y}} \right) = \frac{\partial L}{\partial y}$
- Geodesics  $\frac{d^2x}{dS^2} = 0, \quad \frac{d^2y}{dS^2} = 0$



| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|-----------|--------|---------|
| Spac     | etime                |                    |                    |           |        |         |

### Flat Spaces - Polar

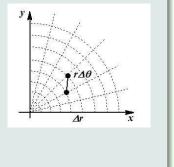



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めんの

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|-----------|--------|---------|
| Spac     | etime                |                    |                    |           |        |         |

### Flat Spaces - Polar

• Line element  $dS^2 = dr^2 + (rd\theta)^2$ 

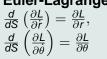


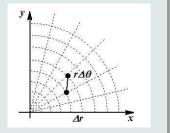

| Abs | TGRU<br>00000 | General Relativity<br>○○●●○○○○○○○○○ | Textbooks | Poster | Summary |
|-----|---------------|-------------------------------------|-----------|--------|---------|
|     |               |                                     |           |        |         |

### Flat Spaces - Polar

• Line element  $dS^2 = dr^2 + (rd\theta)^2$ 

• 
$$S = \int_{A}^{B} \sqrt{\left(\frac{dr}{d\sigma}\right)^{2} + r^{2} \left(\frac{d\theta}{d\sigma}\right)^{2}} d\sigma$$

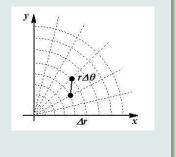




▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 00000000 | 0000      |        |         |
|          |       |                    |                                         |          |           |        |         |

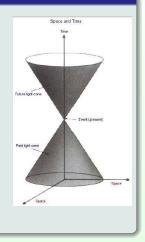
#### Flat Spaces - Polar

- Line element  $dS^2 = dr^2 + (rd\theta)^2$
- $S = \int_{A}^{B} \sqrt{\left(\frac{dr}{d\sigma}\right)^{2} + r^{2} \left(\frac{d\theta}{d\sigma}\right)^{2}} d\sigma$
- Euler-Lagrange Eq.





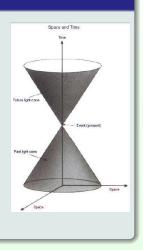

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 00000000 | 0000      |        |         |
|          |       |                    |                                         |          |           |        |         |


#### Flat Spaces - Polar

- Line element  $dS^2 = dr^2 + (rd\theta)^2$
- $S = \int_{A}^{B} \sqrt{\left(\frac{dr}{d\sigma}\right)^{2} + r^{2} \left(\frac{d\theta}{d\sigma}\right)^{2}} d\sigma$
- Euler-Lagrange Eq.
  - $\frac{d}{dS} \left( \frac{\partial L}{\partial \dot{r}} \right) = \frac{\partial L}{\partial r}, \\ \frac{d}{dS} \left( \frac{\partial L}{\partial \dot{\theta}} \right) = \frac{\partial L}{\partial \theta}$
- **Geodesics**  $\frac{\partial^2 r}{\partial S^2} = r \left(\frac{d\theta}{dS}\right)^2, \\
  \frac{d}{dS} \left(r^2 \frac{d\theta}{dS}\right) = 0.$

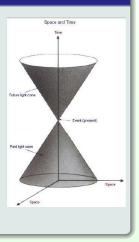


|          | 00000 | 000                | 00 <b>00</b> 000000000000000000000000000000000 | 0000000 | 00000     |        |         |
|----------|-------|--------------------|------------------------------------------------|---------|-----------|--------|---------|
| Abstract | TGRU  | Special Relativity | General Relativity                             | Syllabi | Textbooks | Poster | Summary |


### Minkowski Space



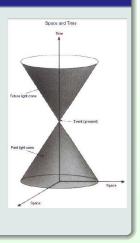
|          | <br>               |                    |         |           |        |         |
|----------|--------------------|--------------------|---------|-----------|--------|---------|
| Abstract | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |


### Minkowski Space

• Line element  $ds^2 = -(cdt)^2 + dx^2 + dy^2 + dz^2$ 

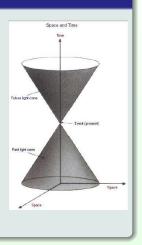


| Abstract | TGRU<br>00000 | Special Relativity | General Relativity<br>○○○○●○○○○○○○○ | Syllabi | Textbooks | Poster | Summary |
|----------|---------------|--------------------|-------------------------------------|---------|-----------|--------|---------|
| _        | -             |                    |                                     |         |           |        |         |


- Line element  $ds^2 = -(cdt)^2 + dx^2 + dy^2 + dz^2$
- Proper time  $d\tau^2 = -ds^2/c^2$



| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Syllabi | Poster | Summary |
|----------|----------------------|--------------------|--------------------|---------|--------|---------|
|          |                      |                    |                    |         |        |         |

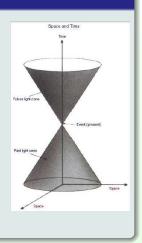

- Line element  $ds^2 = -(cdt)^2 + dx^2 + dy^2 + dz^2$
- Proper time  $d\tau^2 = -ds^2/c^2$

• 
$$\tau_{AB} = \int_{\tau_A}^{\tau_B} \sqrt{1 - V^2(t')/c^2} dt'$$
 or  $d\tau = dt \sqrt{1 - V^2/c^2}$ 



| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Syllabi<br>oooooooo | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|---------------------|-----------|--------|---------|
|          |                      |                    |                    |                     |           |        |         |

- Line element  $ds^2 = -(cdt)^2 + dx^2 + dy^2 + dz^2$
- Proper time  $d\tau^2 = -ds^2/c^2$
- $\tau_{AB} = \int_{\tau_A}^{\tau_B} \sqrt{1 V^2(t')/c^2} dt'$  or  $d\tau = dt \sqrt{1 V^2/c^2}$
- Variational Principle  $\delta \tau = 0$

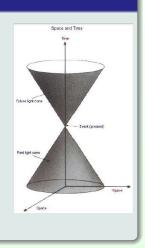



| Abstract | TGRU  | Special Relativity |                                         | Syllabi |       | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 00000 |        |         |
|          |       |                    |                                         |         |       |        |         |

- Line element  $ds^2 = -(cdt)^2 + dx^2 + dy^2 + dz^2$
- Proper time  $d\tau^2 = -ds^2/c^2$

• 
$$\tau_{AB} = \int_{\tau_A}^{\tau_B} \sqrt{1 - V^2(t')/c^2} dt'$$
 or  $d\tau = dt \sqrt{1 - V^2/c^2}$ 

- Variational Principle  $\delta \tau = 0$
- Euler-Lagrange Eq.  $\frac{d}{dS} \left( \frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x},$  $L = \sqrt{-\eta_{\alpha\beta} \frac{dx^{\alpha}}{d\sigma} \frac{dx^{\beta}}{d\sigma}}$




| Abstract | TGRU  | Special Relativity |                                         | Syllabi |       | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 00000 |        |         |
|          |       |                    |                                         |         |       |        |         |

- Line element  $ds^2 = -(cdt)^2 + dx^2 + dy^2 + dz^2$
- Proper time  $d\tau^2 = -ds^2/c^2$

• 
$$au_{AB} = \int_{\tau_A}^{\tau_B} \sqrt{1 - V^2(t')/c^2} \, dt'$$
 or  $d\tau = dt \sqrt{1 - V^2/c^2}$ 

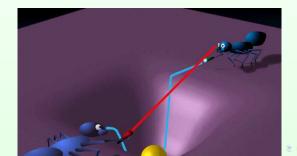
- Variational Principle  $\delta \tau = 0$
- Euler-Lagrange Eq.  $\frac{d}{dS} \left( \frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x},$   $L = \sqrt{-\eta_{\alpha\beta} \frac{dx^{\alpha}}{d\sigma} \frac{dx^{\beta}}{d\sigma}}$ • Geodesics  $\frac{d^2x^{\alpha}}{d\tau^2} = 0$



| Abstract | <b>TGRU</b><br>00000 | Special Relativity | Syllabi<br>00000000 | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|---------------------|-----------|--------|---------|
| _        |                      |                    |                     |           |        |         |

### Curved Spaces




4 E 5

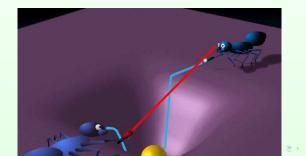
Э

| Abstract | TGRU | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          |      |                    | 000000000000000000000000000000000000000 |         | 00000     |        |         |
|          |      |                    |                                         |         |           |        |         |

### Curved Spaces

• Line element  $ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$ 




ъ

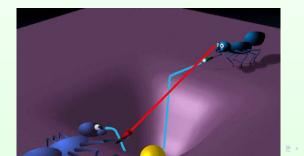
| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 0000      |        |         |

### Curved Spaces

• Line element 
$$ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

• 
$$\tau_{AB} = \int_{\tau_A}^{\tau_B} \sqrt{-g_{\alpha\beta} \frac{dx^{\alpha}}{d\sigma} \frac{dx^{\beta}}{d\sigma}} \, d\sigma$$



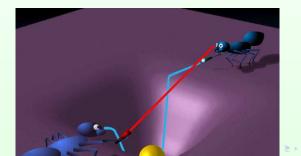

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 00000     |        |         |

### **Curved Spaces**

• Line element  $ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$ 

• 
$$\tau_{AB} = \int_{\tau_A}^{\tau_B} \sqrt{-g_{\alpha\beta} \frac{dx^{\alpha}}{d\sigma} \frac{dx^{\beta}}{d\sigma}} \, d\sigma$$

• Euler-Lagrange Eq.  $\frac{d}{dS}\left(\frac{\partial L}{\partial \dot{x}^{\alpha}}\right) = \frac{\partial L}{\partial x^{\alpha}},$ 

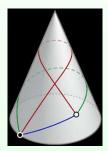



| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 00000000 | 0000      |        |         |

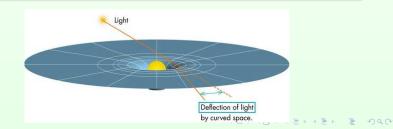
### Curved Spaces

- Line element  $ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$
- $\tau_{AB} = \int_{\tau_A}^{\tau_B} \sqrt{-g_{\alpha\beta} \frac{dx^{\alpha}}{d\sigma} \frac{dx^{\beta}}{d\sigma}} \, d\sigma$
- Euler-Lagrange Eq.  $\frac{d}{dS} \left( \frac{\partial L}{\partial \dot{x}^{\alpha}} \right) = \frac{\partial L}{\partial x^{\alpha}},$

• Geodesics 
$$\frac{d^2 x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}_{\beta\gamma} \frac{dx^{\beta}}{d\tau} \frac{dx^{\gamma}}{d\tau} = 0$$



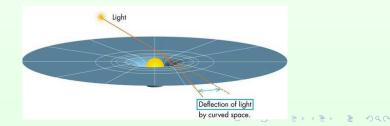

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|-----------|--------|---------|
|          |                      |                    |                    |           |        |         |


# Geodesics



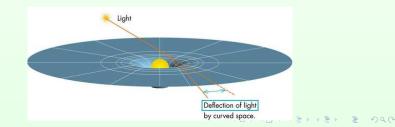





| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Syllabi<br>0000000 | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|--------------------|-----------|--------|---------|

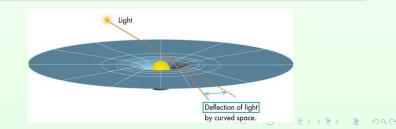


| Abstract TGRL | Special Relat | ivity General Relativity | Syllabi   | Textbooks | Poster | Summary |
|---------------|---------------|--------------------------|-----------|-----------|--------|---------|
| 0000          | 0 000         | 0000000000000            | 00 000000 | 00000     |        |         |


### Schwarzschild

• Line element  $ds^2 = -\left(1 - \frac{2M}{a}\right)dt^2 + \left(1 - \frac{2M}{a}\right)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$ 

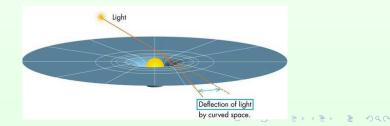



| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000    | 00000000 | 0000      |        |         |

- Line element  $ds^2 = -\left(1 \frac{2M}{a}\right)dt^2 + \left(1 \frac{2M}{a}\right)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$
- Geodesic equations ⇒ Particle Orbits & Light Deflection

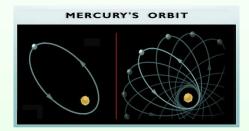


| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 0000      |        |         |


- Line element  $ds^2 = -\left(1 \frac{2M}{a}\right)dt^2 + \left(1 \frac{2M}{a}\right)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$
- Geodesic equations ⇒ Particle Orbits & Light Deflection
- Weak Field Limit  $\Rightarrow$  Newtonian Approximation

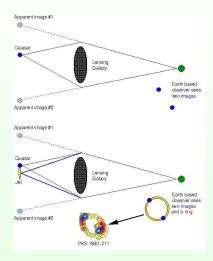


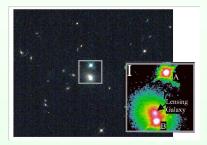
| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    | 000000000000000    |         |           |        |         |


- Line element  $ds^2 = -\left(1 \frac{2M}{a}\right)dt^2 + \left(1 \frac{2M}{a}\right)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$
- Geodesic equations ⇒ Particle Orbits & Light Deflection
- Weak Field Limit  $\Rightarrow$  Newtonian Approximation

• 
$$ds^2 = -\left(1 + \frac{2\Phi}{c^2}\right)(cdt)^2 + \left(1 - \frac{2\Phi}{c^2}\right)dS^2$$

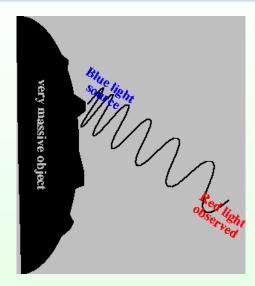



Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary


### **Classical Tests - Perihelion Shift**

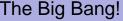


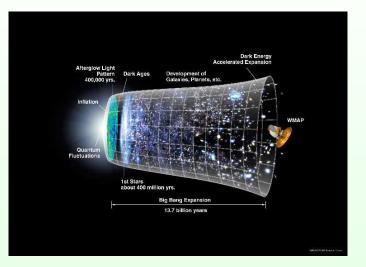
(日)


# **Classical Tests - Bending of Light**



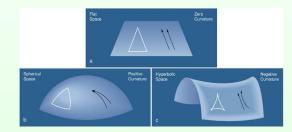



Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary


### **Classical Tests - Gravitational Red Shift**



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

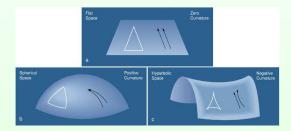

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | Syllabi<br>0000000 | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|-----------|--------|---------|
| The      |                      | un al              |                    |           |        |         |





| Abstract | TGRU<br>00000 | Special Relativity | Syllabi<br>0000000 | Textbooks | Poster | Summary |
|----------|---------------|--------------------|--------------------|-----------|--------|---------|
| $\sim$   | _             |                    |                    |           |        |         |

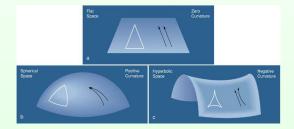
### FRW model




◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|-----------|--------|---------|
|          |                      |                    |                    |           |        |         |

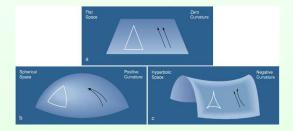
### FRW model


• Line element  $ds^{2} = -dt^{2} + a^{2}(t) \left[ \frac{dr^{2}}{1-kr^{2}} + r^{2} \left( d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$ 



| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 00000     |        |         |

### FRW model


- Line element  $ds^{2} = -dt^{2} + a^{2}(t) \left[ \frac{dr^{2}}{1 - kr^{2}} + r^{2} \left( d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$
- Friedman equation  $\dot{a}^2 \frac{8\pi\rho}{3}a^2 = -k$



| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 00000000 | 0000      |        |         |

### FRW model

- Line element  $ds^{2} = -dt^{2} + a^{2}(t) \left[ \frac{dr^{2}}{1 - kr^{2}} + r^{2} \left( d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$
- Friedman equation  $\dot{a}^2 \frac{8\pi\rho}{3}a^2 = -k$
- Total Density  $\rho = \left(\Omega_{v} + \frac{\Omega_{m}}{a^{3}} + \frac{\Omega_{r}}{a^{4}}\right) \rho_{crit}$



・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ つ へ の

# Applications of General Relativity

### There are many more applications ...

| Global Positioning System (GPS)    | Lense-Thirring precession of a gyroscope  |  |  |  |
|------------------------------------|-------------------------------------------|--|--|--|
| Cosmological redshift              | Bending of light by the Sun               |  |  |  |
| Big-bang                           | Shapiro time delay                        |  |  |  |
| Gravitational lensing              | The fate of the universe                  |  |  |  |
| Propagation of gravitational waves | Determining parameters of binary pulsars  |  |  |  |
| Spherical gravitational collapse   | X-ray sources                             |  |  |  |
| Active Galactic Nuclei             | Hawking radiation from black holes        |  |  |  |
| Frame-dragging by a rotating body  | Expansion of the universe                 |  |  |  |
| Gravitational redshift             | Accretion disks around compact objects    |  |  |  |
| Formation of black holes           | Operation of gravitational wave detectors |  |  |  |
| Neutron stars                      | Precession of Mercury's perihelion        |  |  |  |
| Cosmic Background Radiation        |                                           |  |  |  |

Abstract TGRU Special Relativity General Relativity **Syllabi** Textbooks Poster Summary occoo occ occoocococococo ●occococococo

# Syllabi - General Interest

### The Narrative

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

### Syllabi - General Interest

#### The Narrative

• Explain why we need GR, but do not explain GR.

# Syllabi - General Interest

#### The Narrative

• Explain why we need GR, but do not explain GR.

The narrative line of the course:

Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary

### Syllabi - General Interest

#### The Narrative

• Explain why we need GR, but do not explain GR.

- The narrative line of the course:
  - Phenomena  $\Rightarrow$

### Syllabi - General Interest

### The Narrative

• Explain why we need GR, but do not explain GR.

- The narrative line of the course:
  - Phenomena  $\Rightarrow$
  - Experiments/Observations ⇒

# Syllabi - General Interest

#### The Narrative

Explain why we need GR, but do not explain GR.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

- The narrative line of the course:
  - Phenomena  $\Rightarrow$
  - Experiments/Observations  $\Rightarrow$
  - Newtonian prediction (simulation)  $\Rightarrow$

# Syllabi - General Interest

#### The Narrative

• Explain why we need GR, but do not explain GR.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

- The narrative line of the course:
  - Phenomena  $\Rightarrow$
  - Experiments/Observations  $\Rightarrow$
  - Newtonian prediction (simulation)  $\Rightarrow$
  - Failures of Newtonian theory  $\Rightarrow$

# Syllabi - General Interest

### The Narrative

• Explain why we need GR, but do not explain GR.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

## The narrative line of the course:

- Phenomena  $\Rightarrow$
- Experiments/Observations ⇒
- Newtonian prediction (simulation)  $\Rightarrow$
- Failures of Newtonian theory  $\Rightarrow$
- Need for GR ⇒

# Syllabi - General Interest

### The Narrative

• Explain why we need GR, but do not explain GR.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

## The narrative line of the course:

- Phenomena  $\Rightarrow$
- Experiments/Observations ⇒
- Newtonian prediction (simulation)  $\Rightarrow$
- Failures of Newtonian theory  $\Rightarrow$
- In the second secon
- Correct GR Simulation

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 000000  |           |        |         |

## Syllabus

| Topics         | Input                           | GR Application           |  |
|----------------|---------------------------------|--------------------------|--|
| Tides          | Equivalence Principle           |                          |  |
| Light Shifting | Doppler                         | GPS with corrections.    |  |
|                |                                 | Doppler shifts,          |  |
|                |                                 | Reference Frames         |  |
| Light bending  | Why doesn't ISS fall? Orbits    | Correct bending, Lensing |  |
| Black Holes    | Spectral Lines, Escape Velocity | Maser data               |  |
| CMB/Hubble     | Data                            | Cosmology                |  |

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 000000  |           |        |         |

## Syllabus

| Topics         | Input                           | GR Application           |
|----------------|---------------------------------|--------------------------|
| Tides          | Equivalence Principle           |                          |
| Light Shifting | Doppler                         | GPS with corrections.    |
|                |                                 | Doppler shifts,          |
|                |                                 | Reference Frames         |
| Light bending  | Why doesn't ISS fall? Orbits    | Correct bending, Lensing |
| Black Holes    | Spectral Lines, Escape Velocity | Maser data               |
| CMB/Hubble     | Data                            | Cosmology                |

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 000000  |           |        |         |

## Syllabus

| Topics         | Input                           | GR Application           |
|----------------|---------------------------------|--------------------------|
| Tides          | Equivalence Principle           |                          |
| Light Shifting | Doppler                         | GPS with corrections.    |
|                |                                 | Doppler shifts,          |
|                |                                 | Reference Frames         |
| Light bending  | Why doesn't ISS fall? Orbits    | Correct bending, Lensing |
| Black Holes    | Spectral Lines, Escape Velocity | Maser data               |
| CMB/Hubble     | Data                            | Cosmology                |

(日本) (雪本) (田本)

=

### **Possible Activities**

Taylor-Wheeler projects

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 000000  |           |        |         |

### Syllabus

| Topics         | Input                           | GR Application           |
|----------------|---------------------------------|--------------------------|
| Tides          | Equivalence Principle           |                          |
| Light Shifting | Doppler                         | GPS with corrections.    |
|                |                                 | Doppler shifts,          |
|                |                                 | Reference Frames         |
| Light bending  | Why doesn't ISS fall? Orbits    | Correct bending, Lensing |
| Black Holes    | Spectral Lines, Escape Velocity | Maser data               |
| CMB/Hubble     | Data                            | Cosmology                |

・ロット (雪) (日) (日)

ъ

- Taylor-Wheeler projects
- Same acceleration in vacuum for all

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 000000  |           |        |         |

## Syllabus

| Topics         | Input                           | GR Application           |
|----------------|---------------------------------|--------------------------|
| Tides          | Equivalence Principle           |                          |
| Light Shifting | Doppler                         | GPS with corrections.    |
|                |                                 | Doppler shifts,          |
|                |                                 | Reference Frames         |
| Light bending  | Why doesn't ISS fall? Orbits    | Correct bending, Lensing |
| Black Holes    | Spectral Lines, Escape Velocity | Maser data               |
| CMB/Hubble     | Data                            | Cosmology                |

- Taylor-Wheeler projects
- Same acceleration in vacuum for all
- Elevator acceleration

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 000000  |           |        |         |

## Syllabus

| Topics         | Input                           | GR Application           |
|----------------|---------------------------------|--------------------------|
| Tides          | Equivalence Principle           |                          |
| Light Shifting | Doppler                         | GPS with corrections.    |
|                |                                 | Doppler shifts,          |
|                |                                 | Reference Frames         |
| Light bending  | Why doesn't ISS fall? Orbits    | Correct bending, Lensing |
| Black Holes    | Spectral Lines, Escape Velocity | Maser data               |
| CMB/Hubble     | Data                            | Cosmology                |

- Taylor-Wheeler projects
- Same acceleration in vacuum for all
- Elevator acceleration
- Construct spacetime diagrams from a movie

Abstract TGRU Special Relativity General Relativity Syllabi Textbooks Poster Summary

# Syllabi - Physics First

The Logical Order

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

| Abstract TGRU | Special Rela | tivity General Relativ | ity Syllabi | Textbooks | Poster | Summary |
|---------------|--------------|------------------------|-------------|-----------|--------|---------|
| 00000         | 000          | 000000000              | 0000 00000  | 00000     |        |         |

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

# Syllabi - Physics First

## The Logical Order

• Assemble the necessary mathematical tools.



# Syllabi - Physics First

### The Logical Order

- Assemble the necessary mathematical tools.
- Motivate the field equations.

| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 0000000000000000   | 0000000 | 0000      |        |         |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

# Syllabi - Physics First

### The Logical Order

- Assemble the necessary mathematical tools.
- Motivate the field equations.
- Solve the field equations.

| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 00000000000000     | 0000000 | 0000      |        |         |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

# Syllabi - Physics First

### The Logical Order

- Assemble the necessary mathematical tools.
- Motivate the field equations.
- Solve the field equations.
- Apply to realistic situations.

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 0000000 | 000       |        |         |

# Syllabi - Physics First

### The Logical Order

- Assemble the necessary mathematical tools.
- Motivate the field equations.
- Solve the field equations.
- Apply to realistic situations.

## Advantages

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 0000000 | 000       |        |         |

# Syllabi - Physics First

#### The Logical Order

- Assemble the necessary mathematical tools.
- Motivate the field equations.
- Solve the field equations.
- Apply to realistic situations.

### Advantages

Gets quickly to physical effects

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 0000000 | 000       |        |         |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

# Syllabi - Physics First

### The Logical Order

- Assemble the necessary mathematical tools.
- Motivate the field equations.
- Solve the field equations.
- Apply to realistic situations.

### Advantages

- Gets quickly to physical effects
- More flexible timing

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 0000000 | 0000      |        |         |

# Syllabi - Physics First

### The Logical Order

- Assemble the necessary mathematical tools.
- Motivate the field equations.
- Solve the field equations.
- Apply to realistic situations.

### Advantages

- Gets quickly to physical effects
- More flexible timing
- More closely connected to curriculum Mechanics!

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|----------|-----------|--------|---------|
|          |      |                    |                    | 00000000 | 0000      |        |         |

## **Connections to Mechanics**

## First Integrals

・ ロ ト ・ 個 ト ・ 目 ト ・ 目 ・ の へ ()

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 0000000 | 0000      |        |         |

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# **Connections to Mechanics**

## **First Integrals**

• Test particles in Schwarzshild metric.

$$E = \frac{1}{2} \left(\frac{dr}{d\tau}\right)^2 + V_{\text{eff}}, \quad V_{\text{eff}} = -\frac{M}{r} + \frac{\ell^2}{2r^2} - \frac{M\ell^2}{r^3}$$

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 0000000 | 0000      |        |         |

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# **Connections to Mechanics**

## First Integrals

• Test particles in Schwarzshild metric.  

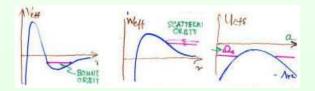
$$E = \frac{1}{2} \left(\frac{dr}{d\tau}\right)^2 + V_{\text{eff}}, \quad V_{\text{eff}} = -\frac{M}{r} + \frac{\ell^2}{2r^2} - \frac{M\ell}{r^3}$$
• Light rays in Schwarzshild metric.  

$$\frac{1}{b^2} = \frac{1}{\ell^2} \left(\frac{dr}{d\lambda}\right)^2 + W_{\text{eff}}, \quad W_{\text{eff}} = \frac{1}{r^2} \left(1 - \frac{2M}{r}\right)$$

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    | 0000000 | 0000      |        |         |

# **Connections to Mechanics**

### **First Integrals**


• Test particles in Schwarzshild metric.  $E = \frac{1}{2} \left(\frac{dr}{d\tau}\right)^2 + V_{\text{eff}}, \quad V_{\text{eff}} = -\frac{M}{r} + \frac{\ell^2}{2r^2} - \frac{M\ell^2}{r^3}$ • Light rays in Schwarzshild metric.  $\frac{1}{b^2} = \frac{1}{\ell^2} \left(\frac{dr}{d\lambda}\right)^2 + W_{\text{eff}}, \quad W_{\text{eff}} = \frac{1}{r^2} \left(1 - \frac{2M}{r}\right)$ • FRW Cosmological Models.  $\frac{1}{2} \left(\frac{da}{dt}\right)^2 + U_{\text{eff}} = \frac{\Omega_c}{2}, \quad U_{\text{eff}} = -\frac{1}{2} \left(\Omega_v a^2 + \frac{\Omega_m}{a} + \frac{\Omega_r}{a^2}\right)$ 



## **Connections to Mechanics**

### **First Integrals**

• Test particles in Schwarzshild metric.  $E = \frac{1}{2} \left(\frac{dr}{d\tau}\right)^2 + V_{\text{eff}}, \quad V_{\text{eff}} = -\frac{M}{r} + \frac{\ell^2}{2r^2} - \frac{M\ell^2}{r^3}$ • Light rays in Schwarzshild metric.  $\frac{1}{b^2} = \frac{1}{\ell^2} \left(\frac{dr}{d\lambda}\right)^2 + W_{\text{eff}}, \quad W_{\text{eff}} = \frac{1}{r^2} \left(1 - \frac{2M}{r}\right)$ • FRW Cosmological Models.  $\frac{1}{2} \left(\frac{da}{dt}\right)^2 + U_{\text{eff}} = \frac{\Omega_c}{2}, \quad U_{\text{eff}} = -\frac{1}{2} \left(\Omega_v a^2 + \frac{\Omega_m}{a} + \frac{\Omega_r}{a^2}\right)$ 



◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

# Syllabi - Physics First

Things to be included

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ●

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 00000     |        |         |
|          |       |                    |                                         |         |           |        |         |

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

# Syllabi - Physics First

## Things to be included

• spacetime diagrams, lightcones,

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 0000      |        |         |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

# Syllabi - Physics First

### Things to be included

- spacetime diagrams, lightcones,
- metrics Schwarzshild solution,

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 00000000 | 000       |        |         |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

# Syllabi - Physics First

#### Things to be included

- spacetime diagrams, lightcones,
- metrics Schwarzshild solution,
- black holes cosmology,

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 00000000 | 0000      |        |         |

# Syllabi - Physics First

### Things to be included

- spacetime diagrams, lightcones,
- metrics Schwarzshild solution,
- black holes cosmology,
- FRW gravitational waves

| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 00000000000000     | 00000000 |           |        |         |

# Syllabi - Physics First

### Things to be included

- spacetime diagrams, lightcones,
- metrics Schwarzshild solution,
- black holes cosmology,
- FRW gravitational waves

## Course Themes

| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 00000000000000     | 00000000 |           |        |         |

# Syllabi - Physics First

### Things to be included

- spacetime diagrams, lightcones,
- metrics Schwarzshild solution,
- black holes cosmology,
- FRW gravitational waves

### **Course Themes**

Black Holes

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|----------|-----------|--------|---------|
|          |      |                    |                    | 00000000 |           |        |         |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

# Syllabi - Physics First

### Things to be included

- spacetime diagrams, lightcones,
- metrics Schwarzshild solution,
- black holes cosmology,
- FRW gravitational waves

### **Course Themes**

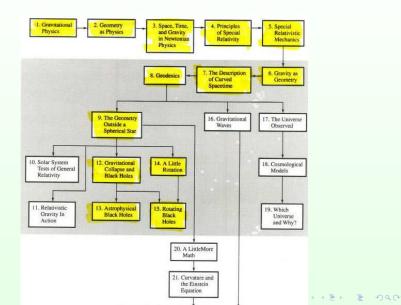
- Black Holes
- Cosmology

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|----------|-----------|--------|---------|
|          |      |                    |                    | 00000000 |           |        |         |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

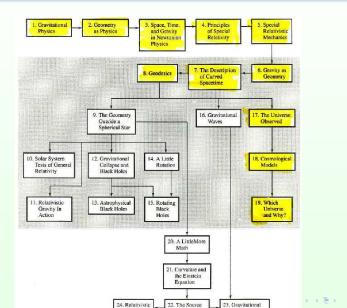
# Syllabi - Physics First

#### Things to be included


- spacetime diagrams, lightcones,
- metrics Schwarzshild solution,
- black holes cosmology,
- FRW gravitational waves

### Course Themes

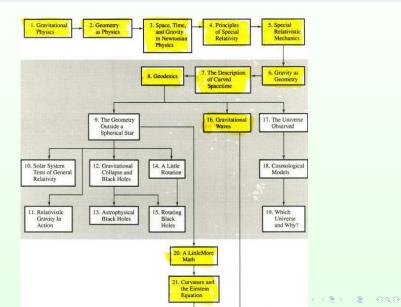
- Black Holes
- Cosmology
- Gravitational Waves




## Syllabus - Black Hole Emphasis

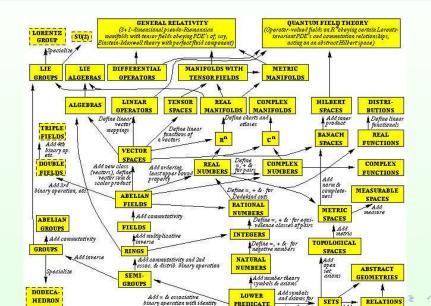





# Syllabus - Cosmology Emphasis



э.




## Syllabus - Gravitational Wave Emphasis





## Syllabi - Math Intensive



| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi  | Textbooks  | Poster | Summary |  |
|----------|-------|--------------------|--------------------|----------|------------|--------|---------|--|
|          | 00000 | 000                | 00000000000000     | 00000000 | 0000000000 |        |         |  |

# Syllabi - Math Intensive

## The 7-Fold Way - Tom Moore

| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000    | 00000000 | 000       |        |         |

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Syllabi - Math Intensive

#### The 7-Fold Way - Tom Moore

Blend Math and Physics.

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 0000      |        |         |

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ つ へ の

## Syllabi - Math Intensive

- Blend Math and Physics.
- Use lots of 2D Examples.

| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000    | 00000000 | 000       |        |         |

(日) (同) (日) (日) (日)

## Syllabi - Math Intensive

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.

| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 0000000000000000   | 00000000 | 000       |        |         |

(日) (同) (日) (日) (日)

## Syllabi - Math Intensive

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.
- Drill'em (AKA Boot camp).

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 0000      |        |         |

(日) (同) (日) (日) (日)

## Syllabi - Math Intensive

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.
- Drill'em (AKA Boot camp).
- Develop Ownership through activity

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|---------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 0000000 | 0000      |        |         |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

## Syllabi - Math Intensive

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.
- Drill'em (AKA Boot camp).
- Develop Ownership through activity
- Use tools to avoid tedium

## Syllabi - Math Intensive

#### The 7-Fold Way - Tom Moore

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.
- Drill'em (AKA Boot camp).
- Develop Ownership through activity
- Use tools to avoid tedium

## Syllabi - Math Intensive

#### The 7-Fold Way - Tom Moore

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.
- Drill'em (AKA Boot camp).
- Develop Ownership through activity
- Use tools to avoid tedium

#### Treat Tensors as Generalized Vectors

Tensors represent physical objects

## Syllabi - Math Intensive

#### The 7-Fold Way - Tom Moore

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.
- Drill'em (AKA Boot camp).
- Develop Ownership through activity
- Use tools to avoid tedium

- Tensors represent physical objects
- Tensors have components relative to a basis

## Syllabi - Math Intensive

#### The 7-Fold Way - Tom Moore

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.
- Drill'em (AKA Boot camp).
- Develop Ownership through activity
- Use tools to avoid tedium

- Tensors represent physical objects
- Tensors have components relative to a basis
- Raise/lower indices to embed metric

| Abstract | TGRU  | Special Relativity | General Relativity                      | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|-----------------------------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000000000000000000000000000 | 00000000 | 000       |        |         |

## Syllabi - Math Intensive

#### The 7-Fold Way - Tom Moore

- Blend Math and Physics.
- Use lots of 2D Examples.
- Keep It Suitably Simple.
- Drill'em (AKA Boot camp).
- Develop Ownership through activity
- Use tools to avoid tedium

- Tensors represent physical objects
- Tensors have components relative to a basis
- Raise/lower indices to embed metric
- Tensors provide firm foundation for understanding

| Abstract | TGRU  | Special Relativity | General Relativity | Syllabi  | Textbooks | Poster | Summary |
|----------|-------|--------------------|--------------------|----------|-----------|--------|---------|
|          | 00000 | 000                | 000000000000000    | 00000000 | 000       |        |         |

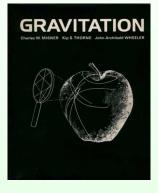
# Syllabi - Math Intensive

| 1  | Conceptual Overview       | Review of Relativity   | Four-Vectors              |
|----|---------------------------|------------------------|---------------------------|
| 2  | Index Notation            | Arbitrary Coordinates  | Tensor Equations          |
| 3  | Maxwell's Equations       | Geodesics              | The Schwarzchild Metric   |
| 4  | Particle Orbits           | Perihelion Precession  | Photon Orbits             |
| 5  | Gravitational Lenses      | Event Horizon          | Alternative Coordinates   |
| 6  | BH Thermodynamics         | The Kerr Metric        | Kerr Particle Orbits      |
| 7  | Ergoregion and Horizon    | Negative Energy Orbits | The Penrose Process       |
| 8  | The Absolute Gradient     | Geodesic Deviation     | The Riemann Tensor        |
| 9  | Stress Energy Tensor      | The Einstein Equation  | Interpreting the Equation |
| 10 | Schwarzchild Solution     | The Observed Universe  | A Cosmic Metric           |
| 11 | Evolution of the Universe | Cosmic Implications    | The Early Universe        |
| 12 | Linearized Gravity        | Gauge Freedom          | Gravitational Waves       |
| 13 | "Energy" in GWs           | Generation of GWs      | Applications              |



Abstract

Special Relativity


General Relativity

Syllabi Textbooks

Poster S

Summary

#### Texts - Old

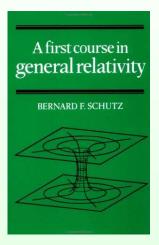


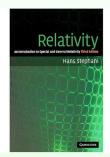


PRINCIPLES AND APPLICATIONS OF THE GENERAL THEORY OF RELATIVITY

STEVENWEINBERG

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで


Abstract TGRU Special Relativity General Relativity Syllabi


bi Textbooks

Poster S

Summary

## Texts - Semi-Old

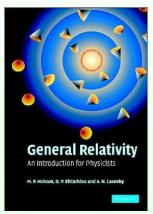


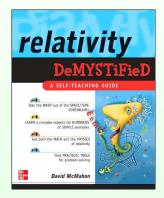


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

### Texts - Math Intensive

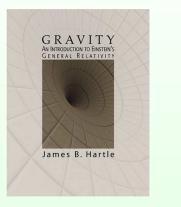
#### **General Relativity**

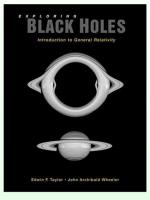

Robert M. Wald





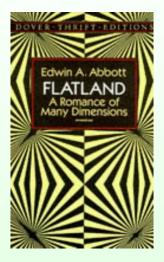

(日)

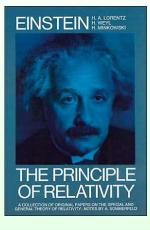

### Texts - Math Intensive



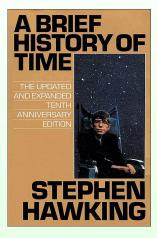


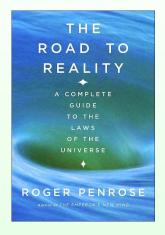

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


## **Texts - Physics First**







・ロト・(四ト・(川下・(日下・)))


### **Texts - General Interest**

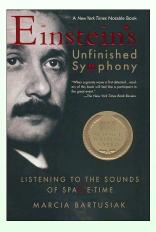




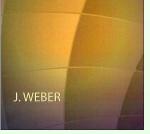
### **Texts - General Interest**







◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへぐ

 Poster Summary


### **Texts - Black Holes**



## **Texts - Gravitational Waves**



## General Relativity and Gravitational Waves



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

| Abstract       | <b>TGRU</b><br>00000 | Special Relativity         | General Relativity | Syllabi        | Textbooks       | Poster   | Summary |
|----------------|----------------------|----------------------------|--------------------|----------------|-----------------|----------|---------|
| Poste          | er Pre               | sentation                  |                    |                |                 |          |         |
|                |                      |                            |                    |                |                 |          |         |
|                |                      |                            |                    |                |                 |          |         |
| AAPT - Teachir | ng General Rel       | lativity, Syracuse, NY- 07 | /2006              | Lessons on Tea | ching Undergrad | duate GR |         |
|                |                      |                            |                    |                |                 |          |         |

#### Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses

Russell L. Herman and Gabriel Lugo

University of North Carolina Wilmington, Wilmington, NC

#### Abstract

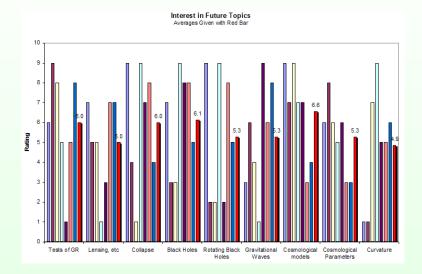
We describe the course content and lessons learned teaching simultaneously offered courses to undergraduate physics and mathematics majors. A subset of students took both courses. The general relativity course was offered in the physics curriculum and focused more on the physics with standard mathematics prerequisites. The differential geometry course was aimed at the geometry of curves and surfaces ending with a study Cartan's equations and applications to computing curvatures in general relativity.

| ADSITACI   |                                               |                                          | Summary |
|------------|-----------------------------------------------|------------------------------------------|---------|
| GR         | Syllabus                                      |                                          |         |
|            | - ,                                           |                                          |         |
| AAPT - Tea | ching General Relativity, Syracuse, NY- 07/20 | D06 Lessons on Teaching Undergraduate GR |         |
|            |                                               |                                          |         |
| Gen        | neral Relativity                              |                                          |         |
|            | -                                             |                                          |         |
|            | Geometry on a Sphere                          | Curved Spacetime                         |         |
|            | Special Relativity                            | Geodesic Equation                        |         |
|            | Four Vectors                                  | Symmetries and Conservation Laws         |         |
|            | Dynamics                                      | Schwarschild Solution                    |         |
|            | Principle of Equivalence                      | Gravitational Redshift                   |         |
|            | Newtonian Gravity                             | Perihelion Shift                         |         |
|            | Metrics                                       | Black Holes                              |         |
|            | Light Cones                                   | Cosmology                                |         |
|            | Local Inertial Frames                         | Einsteins Equation                       |         |

General Relativity Svllabi

Textbooks

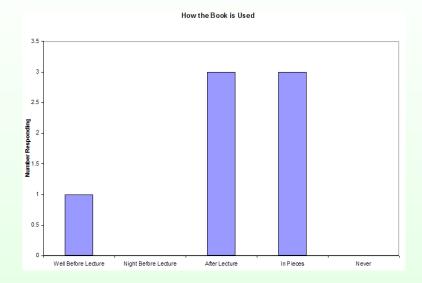
Poster


Abstract

Prerequisites: Multivariate Calculus, Classical Mechanics, Modern Physics, Jr-Sr Standing.

| Abstract   |                       | Special Relativity      | General Rela |         | Syllabi<br>ooooooo |                  | Poster   | Summary |
|------------|-----------------------|-------------------------|--------------|---------|--------------------|------------------|----------|---------|
| DG         | Syllabus              | 5                       |              |         |                    |                  |          |         |
|            |                       |                         |              |         |                    |                  |          |         |
| AAPT - Tea | ching General Relativ | vity, Syracuse, NY- 07. | /2006        | Le      | ssons on Te        | aching Undergrad | duate GR |         |
| Diff       | erential Ge           | ometry                  |              |         |                    |                  |          |         |
|            | Linear Alge           | əbra                    |              | Exteric | r Derivati         | ves              |          |         |
|            | Tangent Ve            | etors                   |              | Hodge   | * Operate          | or               |          |         |
|            | Curves                |                         |              | Frames  | 3                  |                  |          |         |
|            | Fundamen              | tal Theorem of 0        | Curves       | Curvili | near Coo           | rdinates         |          |         |
|            | Surfaces              |                         |              | Covaria | ant Deriva         | atives           |          |         |
|            | Curvature             | of Curves and S         | urfaces      | Cartan  | Equatior           | IS               |          |         |
|            | 1-Forms               |                         |              | Manifo  | lds                |                  |          |         |
|            | Tensors               |                         |              | Fundar  | mental Fo          | orms             |          |         |
|            | Higher Ran            | ık Forms                |              | Curvat  | ure and E          | insteins Equ     | ation    |         |

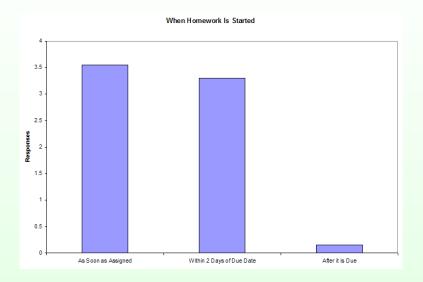
Prerequisites: Linear Algebra, Multivariate Calculus, Jr-Sr Standing.


### Midterm Survey - Topics Interest



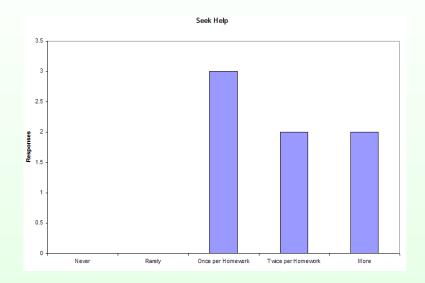
ヘロト ヘアト ヘビト ヘビト ъ




### Midterm Survey - When Do Students Read Text?

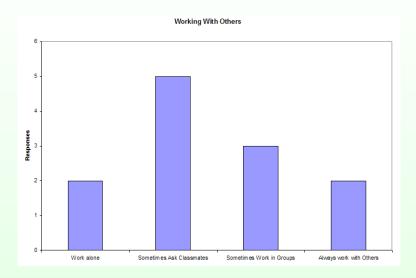


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで




### Midterm Survey - When Do They Start Assignments?

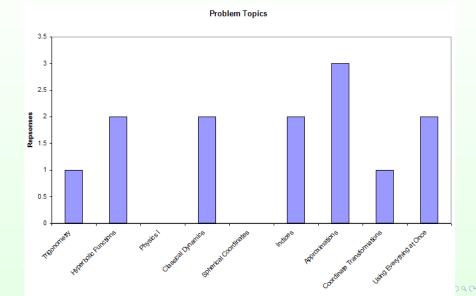





### Midterm Survey - Do They Seek Help?






### Midterm Survey - Do They Work Together?



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○



### Midterm Survey - What Gives Them Difficulty?



| Abstract      | <b>TGRU</b><br>00000 | Special Relativity         | General Relativity | Syllabi<br>0000000 | Textbooks        | Poster   | Summary |
|---------------|----------------------|----------------------------|--------------------|--------------------|------------------|----------|---------|
| Less          | ons Le               | earned                     |                    |                    |                  |          |         |
|               |                      |                            |                    |                    |                  |          |         |
| AAPT - Teachi | ng General Re        | lativity, Syracuse, NY- 07 | 7/2006             | Lessons on Te      | eaching Undergra | duate GR |         |

#### Lessons Learned

Undergraduates need

- more linear algebra emphasizing linear transformations, the spectral theorem and applications
- more exposure to using approximations based on binomial expansions
- 3. more geometric insight
- 4. more exposure to indexed quantities
- 5. more practice doing homework in physics classes
- 6. lessons on how to read physics and mathematics texts
- 7. to learn how to transfer knowledge between courses

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Syllabi<br>0000000 | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|--------------------|-----------|--------|---------|
| _        |                      |                    |                    |                    |           |        |         |

### **Decision Questions**

#### You and Your Department

- How much time is available? 15 wks? 30 wks
- Is this one shot or ongoing?
- What is your background in GR?
- What subtopic is of most interest to you?

| Abstract | <b>TGRU</b><br>00000 | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|----------------------|--------------------|--------------------|---------|-----------|--------|---------|
|          |                      |                    |                    |         |           |        |         |

### **Decision Questions**

#### You and Your Department

- How much time is available? 15 wks? 30 wks
- Is this one shot or ongoing?
- What is your background in GR?
- What subtopic is of most interest to you?

### The Students

- What is their background? Major/Non-major? Mechanics? E& M? Astrophysics? Beginning string theory?
- What is Math Background? Advanced Calculus? Differential Geometry?
- What are their motivations? General interest, astrophysics, gravitational waves, intro to strings, just to know tensors?

| Abstract | TGRU | Special Relativity | General Relativity | Syllabi | Textbooks | Poster | Summary |
|----------|------|--------------------|--------------------|---------|-----------|--------|---------|
|          |      |                    |                    |         |           |        |         |

### **Decision Questions**

#### The Content

- Is the course to be a prerequisite?
- What do students need/want to hear? Solving Einstein equation or doing specific application?
- What is the purpose? What do you know well?
- Is there a focus? GWs, BHs, Cosmology, Formalism?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○ ◆

| Abstract | <b>TGRU</b><br>00000                   | Special Relativity                      | General Relativity | Syllabi | Textbooks   | Poster  | Summary   |
|----------|----------------------------------------|-----------------------------------------|--------------------|---------|-------------|---------|-----------|
| Sum      | mary                                   |                                         |                    |         |             |         |           |
| 1        | Web<br>Web                             | Workshop<br>Site<br>/? Who? Wh          | ot2                |         |             |         |           |
| 2        | Specia<br>Post                         | I Relativity<br>tulates                 |                    |         |             |         |           |
| 3        |                                        | cetime Diagr<br>al Relativity<br>ciples | ams                |         |             |         |           |
| 4        | Ourv                                   | Space<br>ved Space<br>e Syllabi         |                    |         |             |         |           |
|          | <ul><li>Gen</li><li>Physical</li></ul> | eral Interest<br>sics First             |                    |         |             |         |           |
| 567      | Textbo<br>Poster                       |                                         |                    |         | 1 → < 🗗 → < |         | ≣ √) Q (∿ |
|          | Summ                                   | ary                                     |                    | < □     |             | 문 지 문 제 | = ♥) 𝔄 (♥ |