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Abstract

In July 2006 forty five physics faculty from nearly as many universities, including one from UNCW, met at Syracuse
University to discuss the importance of teaching general relativity to undergraduates. This discussion came on the
heels of a year long celebration of Albert Einstein’s miracle year in 1905 which marked the beginnings of the theory
of relativity and the ever increasing interest in gravitation and cosmology. There were numerous talks and posters on
topics that could be used to present general relativity to undergraduates. These included gravitational radiation and
LIGO, deviations from Newtonian gravitation and GPS, black holes, and experimental tests of general relativity.
Leading authors of new undergraduate texts on general relativity contributed their thoughts on what students can
learn about relativity. One of the goals of the workshop was to produce sample syllabi for courses aimed at three
different audiences: general interest, physics intensive and mathematics intensive. In this talk we will discuss some
of the ideas that came out of this workshop and, of course, talk a bit about general relativity and the growing need to

introduce it into the physics curriculum.
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Why Blend SR and GR into the Curriculum?

@ Equivalence Principle works well.
GPS fails without GR.
Gravitational red-shift is a fact.
Hulse-Taylor binary pulsar produces gravitational waves.

Galactic-centered black holes are the norm.
Laser Interferometer Gravitational-Wave Observatory

o
°
°
@ Gravitational Lensing is being used.
°
°
°

E = mc? is more recognized than F = ma.
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What Topics?

@ Black holes
@ Gravitational Waves
@ Cosmology

Approaches - Math or Physics First?
@ Math or Physics First?
@ Physics First

@ Applications first and then mathematical background.
@ Understanding gravity as curved spacetime via examples.
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Who, What?

Who Should Do It?

@ Do not need relativity experts.
@ Streamline Mathematics Background.

o

What Topics?
@ Black holes
@ Gravitational Waves
@ Cosmology

Approaches - Math or Physics First?

@ Math or Physics First?

@ General Interest
Possibly the only physics course.
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Before | forget ...

What Should Undergraduates Know About Gravity?

@ Gravity is a universal interaction.

@ Gravity is unscreened and always attractive
@ Gravity is long-ranged.
@ Gravity is the weakest fundamental interaction.

GRAVITY = GEOMETRY

Guw=Tw
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Special Relativity

@ Speed of light is constant
@ Physics is the same for all inertial observers

o

Consequences
..,

@ Simultaneity

@ Time Dilation

@ Length Contraction e

@ E = mc? and more!

Noted Concerns
@ Reference Frames vs Coordinate Systems
@ Simultaneity Misconceptions

@ No Spacetime Diaarams
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Spacetime Diagram Application

Train in Tunnel Problem

A relativistic train of rest length 240 meters travels at 0.6¢ through a tunnel which has
rest length 360 meters. In the figure below the world lines for the tunnel openings are
drawn as line 1 and 2 and the world line of the front of the train is the third dotted line.
Let Swnnel be the tunnel with coordinates (x,t) and let Sy, be the train coordinates
(x’,t”). We set the origin as the event B0, the back of the train location just as the front
end enters opening 1.
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General Relativity

The Problem of the Century

from the Person of the Century - Smarr, 2000

©

1910s General Theory; Schwarzschild
1920s Equation of Motion Posed
1930s Two Body Problem Posed
1940s Cauchy Problem Posed

1950s Numerical Relativity Conceived

1960s Geometrodynamics; First NR
Attempts

1970s Head-On Spacetime Roughed Out
1980s NR Becomes a Field

@ 1990s Head-On Nailed; 3D Dynamics
Begins

© 60660690

© ¢

@ 2000s 3D Dynamics Nailed; Gravitational Wave Astronomy
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@ Principle of General Covariance - The laws of physics
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apply locally.
@ Spacetime is Curved - Free fall is inertial.




Postulates

o

o

General Principle of Relativity - The laws of physics are

the same for all observers.

Principle of General Covariance - The laws of physics

take the same form for all observers.

Inertial Motion is Geodesic - Particle worldlines
unaffected by forces are timelike or null.

Local Lorentz Invariance - The laws of special relativity

apply locally.
Spacetime is Curved - Free fall is inertial.

Spacetime Curvature Caused by Stress-Energy
Described by Einstein field equations.
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General Relativity

The Equivalence Principle

*

. Accelerating .
at1

sarth gravi

Experiments in (sufficiently
small) freely falling laboratory,
over a short time, give results
that are indistinguishable from
those experiments in an iner-
tial frame in empty space
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Spacetime

Flat Spaces - Cartesian

@ Line element
dS? = dx? + dy?

°S= fA (Cija’dcr’x y)dO'

L=+ (2)°

@ Variational Principle

0S=0
@ Euler-Lagrange Eq.
d (@) — oL
ox/) = ox?
d (oL) _ oL
ds \ay ) — oy
o Geodesms
d2
X =0, a‘ty
d52 ds?2
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Spacetime

Flat Spaces - Polar

@ Line element
dS? = dr? + (rd6)?

S =
SRV (&) +1 (8) do
@ Euler-Lagrange Eq.

is (57) = o
d (oL

aL) _ oL
ds \ g6 ) = o0
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Spacetime

Flat Spaces - Polar

@ Line element
dS? = dr? + (rd6)?

1B 2 () do

@ Euler-Lagrange Eq.

d (i) _ oL
ds \or/) — ar>
d (oL _ oL
dsS \56) — o0
@ Geodesics )
&r de
882 =Tr ( S) )

£ () o
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@ Line element
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@ Proper time d72 = —ds?/c?
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@ Variational Principle 67 =0
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Spacetime

Minkowski Space

@ Line element
ds? = —(cdt)? + dx? + dy? + dz?

@ Proper time d72 = —ds?/c?

® TaAB = f;B 1—V?2(t')/c2dt’' or
dr = dt\/1—V2/c?

@ Variational Principle 67 =0

@ Euler-Lagrange Eq.

d (o) — o
dS \9x/ — ox

_ dxo dx58
L=1/—"8%5 do

0 2y
@ Geodesics 2% =0
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Spacetime

Curved Spaces

@ Line element ds? = g,sdx“dx”

__ (78 dxo dxB
® a8 = [0 \/ ~9a8G5 G0
d
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Spacetime

Curved Spaces

@ Line element ds? = g,sdx“dx”

— [™8 dxo dxB
© mag = [’ \/~9asds 4o d
@ Euler-Lagrange Eq. & (a%) = AL
i d2xe o dxBdx? _
@ Geodesics ‘% +I§ GG =0
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Schwarzschild

@ Line element ds? = .
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Spacetime

Schwarzschild

@ Line element ds? =
(- M)de2 4 (1 %)_1 dr2 4r2 (d92 + sin? qubz)
@ Geodesic equations =- Particle Orbits & Light
Deflection
@ Weak Field Limit = Newtonian Approximation

o ds? = — (14 22) (cdt)? + (1 22) ds?

- Light

Deflection of light

by curved space.
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Classical Tests - Perihelion Shift

MERCURY'S ORBIT
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Classical Tests - Bending of Light

Apparent image #1
O

Quasar

Lensing
Galaxy

Earth based
®  cbserversees
two images

_—
Apparent image #2 °

Apparent image #1
O

Lensing
Galaxy

Earth based
observer sees
o images
and a ring

Apparent image #2

)

L
PKS 1830-211
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Afterglow Light
Pattern

400,000 yrs.

Quantum
Fluctuatians

General Relativity Syllabi Textbooks Poster
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Dark Energy
Accelerated Expansion

Dark Ages Devalopment of
! Galaxies, Planats, stc.

1st Stars.
about 400 million yrs.

Big Bang Expansion

13.7 billion years

Summary
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Cosmology

FRW model

@ Line element

ds2 = —dt? + a(t) [ﬁrkzrz +r? <d92 + sin? 9d¢>2)}

Zero
Curvature

Spherical

Positive | Hyperbolic
Space Space

Negalive
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Cosmology

FRW model

@ Line element

ds2 = —dt? + a(t) [ﬁfrz +r? <d92 + sin? 9d¢>2)}

@ Friedman equation &2 — 22a? = —k

Zero
Curvature

Spherical
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Cosmology

FRW model

@ Line element
ds? = —dt? + a?(t) [1 5 412 (dez + sin 9d¢>2)}

@ Friedman equation &2 — 22a? = —k

@ Total Density p = (Qv 25 aF = )Pcrit
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Applications of General Relativity

There are many more applications ...

Global Positioning System (GPS)
Cosmological redshift

Big-bang

Gravitational lensing

Propagation of gravitational waves
Spherical gravitational collapse
Active Galactic Nuclei
Frame-dragging by a rotating body
Gravitational redshift

Formation of black holes

Neutron stars

Cosmic Background Radiation

Lense-Thirring precession of a gyroscope
Bending of light by the Sun

Shapiro time delay

The fate of the universe

Determining parameters of binary pulsars
X-ray sources

Hawking radiation from black holes
Expansion of the universe

Accretion disks around compact objects
Operation of gravitational wave detectors
Precession of Mercury’s perihelion
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The Narrative

@ Explain why we need GR, but do not explain GR.
@ The narrative line of the course:

@ Phenomena =
Experiments/Observations =
Newtonian prediction (simulation)=-
Failures of Newtonian theory =
Need for GR =
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The Narrative

@ Explain why we need GR, but do not explain GR.
@ The narrative line of the course:

@ Phenomena =

@ Experiments/Observations =

@ Newtonian prediction (simulation)=-
@ Failures of Newtonian theory =

@ Need for GR =

@ Correct GR Simulation
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Syllabus

Topics Input GR Application

Tides Equivalence Principle

Light Shifting | Doppler GPS with corrections.
Doppler shifts,
Reference Frames

Light bending | Why doesn't ISS fall? Orbits Correct bending, Lensing

Black Holes Spectral Lines, Escape Velocity | Maser data

CMB/Hubble Data Cosmology

o

Possible Activities

@ Taylor-Wheeler projects
@ Same acceleration in vacuum for all
@ Elevator acceleration

@ Construct spacetime diagrams from a movie
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Syllabi - Physics First

The Logical Order

@ Assemble the necessary mathematical tools.
@ Motivate the field equations.

@ Solve the field equations.

@ Apply to realistic situations.

Advantages

@ Gets quickly to physical effects
@ More flexible timing

@ More closely connected to curriculum - Mechanics!

\
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Connections to Mechanics

First Integrals

@ Test particles in Schwarzshild metric.
_1/(d 2 . M £2 MZZ
E=3(ar) +Vett Veff=—7 +2z— 1o
@ Light rays in Schwarzshild metric.
1 1 (dry2 1 2M
b = iz (ax) T Wef, Weff =2 (1)
@ FRW Cosmological Models.
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Things to be included

@ spacetime diagrams, lightcones,
@ metrics Schwarzshild solution,
@ black holes cosmology,

@ FRW gravitational waves

o

Course Themes

@ Black Holes
@ Cosmology
K Gravitational Waves

\
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Syllabus - Black Hole Emphasis

1. Graviational 2. Geometry 3 Space, Time, | .| 4. Principles || 5. Special
Physics as Physics and Gravity of Special Relativistic
in Newionian Relativity Mechanics
Physics T

7. The Bescription
i Shacarics of Curved
Spacetime
9. The Geometry 16. Gravitational 17. The Universe
Outside & ves Observed
Spherical Star

]
i

12. Gravitational
Collapse and
Black Holes

18. Cosmalogical

Models

L1 Relativistic 15, Rotating 19. Which
Gravity In Black Universe
Action Holes and Why?

20. A LinleMore
Muth

21, Carvature and
the Einstein
Equation
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Syllabus - Cosmology Emphasis

l 1. Gravitational 2. Geometry I 3, Space, Time, |—f 4 Principles  |—t 5. Special

Physics 85 Physics and Gravity af Special Relativistic
in Newtonian Relativity Mechanics
Physics

7. The Descriplion
of Curyed
Spacetime

9. The Geometry
Outside 1
Spherical Ster

Observed

| 17 The Universe

|

10. Solar System 12 Gravimriana] A Littk
Tests of General Lollapse and Rotatie

Relativity Black Holcs

11, Relativistic 15. Rotating | ; i ] 18 Which
Gravily In Black | } | Universe
Action Hales | and Why?

20. A LicdeMare

Math

31 Curvanre and
the Einstein
Ecjuuivn

Relativistic: | 2. Thea Source 23, Chravitational
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Syllabus - Gravitational Wave Emphasis

1. Gravitational 2. Geometry 3, Spuce, Time, || 4 Principles || 5. Special
Physics as Physics und Gravity of Special Relativistic
in Relativity Mechanics
Physics J
7. The Description 6. Gravity as
8 lZsadexice of Curved Geometry
Spacetime
9. The Geometry 16. Gravitational 17. The Universe
Outside a Waves. Observe
Spherical Star

!

10. Solar System
Tests of General
Relativity

! ! !

11. Relativistic srophysical 13. Rotting 19. Which
Gravity In Black Holes Black Universe
Action Holes and Why?

20. A LinleMore

Math

21. Curvature ane
the Einstein
Equation
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Syllabi - Math Intensive

The 7-Fold Way - Tom Moore

@ Blend Math and Physics.

@ Use lots of 2D Examples.

@ Keep It Suitably Simple.

@ Drill'em (AKA Boot camp).

@ Develop Ownership through activity
@ Use tools to avoid tedium

Treat Tensors as Generalized Vectors
@ Tensors represent physical objects
@ Tensors have components relative to a basis
@ Raise/lower indices to embed metric
@ Tensors provide firm foundation for understanding
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Conceptual Overview
Index Notation
Maxwell's Equations
Particle Orbits
Gravitational Lenses
BH Thermodynamics
Ergoregion and Horizon
The Absolute Gradient
Stress Energy Tensor
Schwarzchild Solution
Evolution of the Universe
Linearized Gravity
“Energy” in GWs

Review of Relativity
Arbitrary Coordinates
Geodesics
Perihelion Precession
Event Horizon
The Kerr Metric
Negative Energy Orbits
Geodesic Deviation
The Einstein Equation
The Observed Universe
Cosmic Implications
Gauge Freedom
Generation of GWs

Four-Vectors
Tensor Equations
The Schwarzchild Metric
Photon Orbits
Alternative Coordinates
Kerr Particle Orbits
The Penrose Process
The Riemann Tensor
Interpreting the Equation
A Cosmic Metric
The Early Universe
Gravitational Waves
Applications
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MISNER  Kip S. THORNE 1d WHEELER




Texts - Semi-Old

Afirstcoursein
general relativity

BERNARD F. SCHUTZ
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General
Relativity

Robert M. Wald

Sean M. Carroll
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A

d
General Relativity

An Introduction for Physicists

M. P Hobson, 6. B Efstathlou and A N, Lasenby

Textbooks

relativit

-
Take the WARP out of the Si

David McMahon
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Texts - Physics First

GRAVITY

AN [NTRODUCTION TO EINSTEIN'S
GENERAL RELATIVITY

James B. Hartle

Edwin F. Taylor » John Archibald




Texts - General Interest

EINSTEIN i

THE PRINCIPLE
OF RELATIVITY

A COLLECTION OF ORIGIAL PAPEAS OV THE SPECLAL NG
GENEAL TEORY OF RELATIVITY. MO SOMMERFELD




Texts - General Interest
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REALITY
-
A COMPLETE
GUIDE
TO THE
LAWS
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UNIVERSE

STEPHEN
HAWKING




Texts - Black Holes

NATIONAL BESTSELLER | rnrsicermsoon |
HOILES Black Holes,

& TIME, White Dwarfs,
WARPS and Neutron Stars

EINSTEIN'S OUTRAGEOUS LEGACY

ORNE

LEN TAWKING

FOREWORD BY




Texts - Gravitational Waves

A New York Times Notable Book

General Relativity
and Gravitational




Poster Presentation

AAPT - Teaching General Relativity, Syracuse, NY- 07/2006 Lessons on Teaching Undergraduate GR

Lessons on Teaching Undergraduate General Relativity
and Differential Geometry Courses
Russell L. Herman and Gabriel Lugo

University of North Carolina Wilmington, Wilmington, NC

Abstract
We describe the course content and lessons learned teaching simultaneously offered
courses to undergraduate physics and mathematics majors. A subset of students took both
courses. The general relativity course was offered in the physics curriculum and focused more
on the physics with standard mathematics prerequisites. The differential geometry course was
aimed at the geometry of curves and surfaces ending with a study Cartan's equations and

applications to computing curvatures in general relativity.




GR Syllabus

AAPT - Teaching General Relativity, Syracuse, NY- 07/2006 Lessens on Teaching Undergraduate GR

General Relativity

Geometry on a Sphere
Special Relativity

Four Vectors

Dynamics

Principle of Equivalence
Newtonian Gravity
Metrics

Light Cones

Local Inertial Frames

Curved Spacetime

Geodesic Equation

Symmetries and Conservation Laws

Schwarschild Solution
Gravitational Redshift
Perihelion Shift

Black Holes
Cosmology

Einsteins Equation

Prereauisites: Multivariate Calculus. Classical Mechanics. Modern Phvsics. Jr-Sr Standina.
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AAPT - Teaching General Relativity, Syracuse, NY- 07/2006 Lessons on Teaching Undergraduate GR

Differential Geometry

Linear Algebra Exterior Derivatives

Tangent Vectors Hodge * Operator

Curves Frames

Fundamental Theorem of Curves Curvilinear Coordinates

Surfaces Covariant Derivatives

Curvature of Curves and Surfaces Cartan Equations

1-Forms Manifolds

Tensors Fundamental Forms

Higher Rank Forms Curvature and Einsteins Equation
Prerequisites: Linear Algebra, Multivariate Calculus, Jr-Sr Standing.



Midterm Survey - Topics Interest

Interest in Future Topics
Averages Given with Red Bar

Rating

Tests of GR  Lensing, eic Collapse Black Holes Rotating Black Gravitational Cosmological Cosmological  Curvature
Holes Waves models Parameters



Midterm Survey - When Do Students Read Text?

How the Book is Used

Number Responding
n M

‘Well Before Lecture Night Before Lecture Afer Lecture InPieces
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Midterm Survey - When Do They Start Assignments?

Responses

When Homework Is Started

[

As Soon as Assigned

Within 2 Days of Due Date

After it is Due



Midterm Survey - Do They Seek Help?

Seek Help

Responses

Never Rarely Once per Homevork Twice per Homework More
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Midterm Survey - Do They Work Together?

‘Working With Others

Responsos

Work alone Sometim es Ask Classmates Sometimes Work in Groups Alvays work with Others



Midterm Survey - What Gives Them Difficulty?

Problem Topics
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Lessons Learned

AAPT - Teaching General Relativity, Syracuse, NY- 07/2006 Lessons on Teaching Undergraduate GR

Lessons Learned

Undergraduates need

1. more linear algebra emphasizing linear transformations,

the spectral theorem and applications

2. more exposure to using approximations based on bino-
mial expansions

3. more geometric insight

=

. more exposure to indexed quantities

(%]

. more practice doing homework in physics classes

@

. lessons on how to read physics and mathematics texts

7. to learn how to transfer knowledge between courses
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Decision Questions

You and Your Department

@ How much time is available? 15 wks? 30 wks
@ |Is this one shot or ongoing?

@ What is your background in GR?

@ What subtopic is of most interest to you?

The Students

@ What is their background? Major/Non-major? Mechanics?
E& M? Astrophysics? Beginning string theory?

@ What is Math Background? Advanced Calculus?
Differential Geometry?

@ What are their motivations? - General interest,

astrophysics, gravitational waves, intro to strings, just to
know tensors?

\



Summary

Decision Questions

@ Is the course to be a prerequisite?

@ What do students need/want to hear? Solving Einstein
equation or doing specific application?

@ What is the purpose? What do you know well?

@ Is there a focus? GWSs, BHs, Cosmology, Formalism?
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